1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	54,00

2. Data about the subject

2.1	Subject name			Technological equipment's			
2.2	Course responsible/lecturer			Conf.dr.ing.Dan Frunza <u>Dan.Frunza@ipm.ut</u>			:luj.ro
2.3	Teachers in charge of seminars			Lecturer Marius Tintelecan			
2.4 ۱	2.4 Year of study II 2.5 Semester 2		2.6 Assessment	С			
2.7 <mark>5</mark>	2.7 Subject Formative category						DS
category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	2	3. Proj	3 ect	
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Sominar		3.6	28	3. Proj	6 oct	
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography							2	0			
(b) Supplementary study in the library, online and in the field							1	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	0			
(d) Tutoring										()
(e) Exams and tests										Z	1
(f) Other activities						()				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 44											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Material Resistance, Mechanics, Machine Organs and Mechanisms
4.2	Competence	

5.1	For the course	
5.2	For the applications	Presence at the laboratory is mandatory
5.2	seminar / lab / proj.	

		Theoretical knowledge: Types of machinery and machinery used in foundries and forging stations. Construction, operation and maintenance of foundry and plastic deformation machines and machines. Methods of choice of machines and equipment's.
rofessional	ompetences	Acquired skills: Identification of components and subassemblies of equipment's and machinery. Analytical and experimental determination of the specific parameters of foundry and plastic deformation machines. Choosing suitable machinery/equipment for use in a manufacturing line.
	C	Acquired skills: Measurement of the parameters of machines of: cast, cored, poured into metal shapes, mechanical presses, hydraulic presses, hammers, etc. Adjustment and verification of the geometric precision and working precision of the machines, mechanical, hydraulic presses, hammers, etc
Cross	competences	Promoting logical, convergent and divergent reasoning, the use of rigorous, efficient and responsible work strategies, under conditions of autonomy and professional independence, based on the principles, norms and values of the code of professional ethics. Effective use of multilingual skills and knowledge of information and communication technology.

2. Discipline objectives (as results from the key competences gained)

7.1	General objective	Training of competences on the construction, operation and maintenance of machinery and technological machines
7.2	Specific objectives	 Acquiring the necessary theoretical knowledge on the types of machinery, construction and exploitation of machines and equipment's. Acquired skills and abilities: Identification of components and subassemblies of machinery and machinery. Choosing suitable machinery/equipment for use in a manufacturing line. Adjustment and verification of the geometric precision and working precision of technological machines.

3. Contents

8.1. Lecture (syllabus)		Teaching methods	Notes
 Introduction. Classification of technological machinery for foundries. Interoperation transport equipment and installations 	2		
 Machinery and installations for the preparation of training mixtures. Prep stations of forming and core mixing. Plants for the regeneration of forming mixtures. 	2	Lecture, presentation slides, heuristic conversation	
3. Machinery for making temporary molds. Core making machines.	2		
4. Machines for debating molds and removing cores.	2		

Mechanized and automated training-casting-debate lines		
5. Machinery and installations for cleaning castings.	2	
Installations for continuous and semi-continuous casting of		
semi-manufactures.		
6. Machines for casting in permanent molds (under the		
action of gravity; low pressure casting)		
7. Machines for casting in permanent molds (centrifugal	2	
field casting; pressure casting)		
8. Introduction: Advantages, disadvantages and	2	
classification of plastic deformation machines; actuators		
and mechanisms of plastic deformation machines;		
Hammers: classification, main functional parameters.		
9.Steam-air hammer: classification, principle of operation,	2	
universal control mechanism, assembly of the rod with		
piston and ram, causes of breakage of the rod.		
10.Pneumatic hammers: classification, operation of the	2	
pneumatic nammer with one cylinder, with two cylinders.		
11. Screw presses: scope of use, classification, main technical characteristics operation stress screw and	2	
materials.		
Mechanical presses: field of use, classification, operation		
of vertical close die forging presses and horizontal forging		
machines, rigidity of mechanical presses.		
12. Hydraulic presses: field of use, classification, main technical	2	
characteristics, operation of free forging, close die forging		
hydraulic presses.		
13.Rolling Mills classification, structure, working regime of the	2	
rolling mills, operation. Calculation of the rolling force. Rolling		
cylinders: classification, loads, materials.		
14. Auxiliary equipment for rolling sections (debiting, straightening	2	
machines, deploying, for transport and metal handling. Wire and		
rod drawing machines: classification, operation of simple and		
multiple drawing machines for bars and pipes.		

Bibliography

1. Micle, V., Zubac, V. – Procedee și echipamente speciale în sectoarele de turnarea metalelor, Editura UT Pres, Cluj-Napooca, 2004.

2. Zubac, V. si Micle, V. - Masini si linii moderne în turnatorii, Editura UT Pres, Cluj-Napooca, 1996.

3. Zubac, V. si Micle, V.- Utilaje pentru turnatorie, Forme permanente, UT Pres, Cluj-Napoca, 1998.

4. Zubac, V. - Utilaje pentru turnatorie, E.D.P., Bucuresti, 1982.

5. Moldovan, V., Chiriţă, V. - Exploatarea raţională a maşinilor de forjat., Editura tehnică, Bucureşti, 1979 6. Moldovan, V., Maniu, A. - Utilaje pentru deformări plastice, Editura didactică şi pedagogică, Bucureşti, 1982

7. Moldovan, V., Dimitriu, S. - Modernizări în secțiile de forjare, Editura Transilvania Press, Cluj-Napoca, 1993

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
1. Laboratory presentation, labor protection measures.	2	Conversation	
Determination of the specific parameters of the roller mixer.		working with	

Research of productivity parameters at a sand mixing preparation		specialty books
station.		Practical work.
2. Constructive-functional study of the machine by shaking and	2	use of specific
additional pressing MF 11. Construction of the indicator diagram,		equipment
experimentally, of the shaking mechanism from the forming		
machine.		
3. Constructive-functional study of the making cores machine by	2	
shooting. Constructive-functional study and determination of the		
productivity of the core blower peel.		
4. Constructive-functional study and determination of the	2	
productivity of the casting machine in permanent forms.		
5. Constructive-functional study of the KCW low pressure casting	2	
machine. Visit at SC Armature SA Cluj-Napoca where the KCW		
machine operates.		
6. Research of the specific parameters of the centrifugal	2	
casting machine.		4
7. The rational choice and operation of pressure casting	2	
machines.		
8. Presentation of works, laboratory and labor protection	2	
measures specific to plastic deformation plants. Study of		
kinematic and hydraulic schemes.		
9. Determination of impacting energy by the crusher	2	
method.		
10. Checking the working accuracy of pneumatic hammers.	2	
11. Measuring the stresses in the 0.4 MN hydraulic press	2	
frame, using strain gauges.		
12. Static rigidity of mechanical presses with a mount.	2	
13. The study of rigidity on the model of mechanical press	2	
frame with a mount.		
14. Measurement of rolling forces using strain gauges.	2	
Bibliography		
1. Zubac, V., Sas, G., Nagy, E., Soporan, V. si Micle, V Utilaje me	etalurgice sp	ecifice -Turnatorie -Indrumator de
laborator, Atelierul de multiplicare al IPC-N, 1986		

2. Moldovan, V., Canta, T. - Îndrumător pentru lucrări de laborator la Utilaje pentru deformări plastice, Atelier de multiplicare al IPC-N, Cluj-Napoca, 1979

3. Rus, A.L., Sas-Boca, M., Utilaje pentru deformări plastice – Îndrumător pentru lucrări de laborator,

Editura Napoca Star, Cluj-Napoca, 2013

4. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

	10.1 Accossment criteria	10.2 Accessment methods	10.3 Weight in the	
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade	
10.4 Course	- The ability to analyze	The exam consists of checking	70%	

	specific problems. The synthesis power of information related to a specific subdomain.	theoretical knowledge (questions) in writing + oral (2hours). After course 7 a partial examination can be taken (written work -1 hour).	
10.5 Seminars /Laboratory/Project	The ability to understand, interpret and solve specific problems in the field. Presence, (inter)activity during laboratory hours.	Oral examination of the knowledge accumulated at the laboratory.	30%
10.6 Minimum standa	ard of performance		

Date of filling in:		Title Surname Name	Signature
12.04.2023	Lecturer	Conf.dr.ing Dan Frunza	
	Teachers in charge of application	Lecturer.Marius Tintelecan	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	55.00

2. Data about the subject

2.1	Subject name				Metallic materials		
2.2	Course responsible/lecturer				Lect. PhD. Eng. Violeta-Valentina Merie		
22	Teachers in charge of laboratories /			/	Lect. PhD. Eng. Violeta-Valentina Merie / Lect. PhD. Eng.		
2.5	projects				Călin-Virgiliu Prică		
2.4	.4 Year of study IV 2.5 Semester I			Ι	2.6 Assessment	Exam	
2.7 \$	2.7 Subject Formative category			,			DS
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	1
3.4 Total hours in the curriculum		of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								86		
(b) Supplementary study in the library, online and in the field							-	10		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							2	<u>28</u>		
(d) Tutoring								0		
(e) Exams and tests								3		
(f) Other activities								0		
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 74										
3.9 Total hours per semester (3.4+3.8) 130										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Materials Science and Engineering knowledge
4.2	Competence	Methods for investigating the structure and properties of metallic materials

5.1	For the course	Online course - PowerPoint presentation; course support on the MS Teams
5.2	For the applications / projects	Practical applications in groups of maximum four students / individual study

		PC1. Design and independent management of a semi - finished characterization program
		(optical microscopy, mechanical testing).
_	s	PC2. Critical analysis of metal parts.
ona	nce	PC3. Optimal choice of the type of semi-finished product for a metal alloy application.
essio	lete	PC.4 Optimal choice of alloy brand for a particular application.
rofe	dmc	PC.5 Use of image acquisition and processing systems.
	ö	PC.6 Use of modern metallographic sample processing systems from various alloys.
		PC.7 Development of projects in which it is necessary to prescribe metallic materials and the
		state of their treatment.
	es	CC1. Autonomous use of equipment in the metallography and testing laboratory.
SS	enc	CC2. Familiarization with teamwork in the laboratory.
Cro	pet	CC3. Awareness of the need for continuous information in the field of metallic materials and al
	com	specific technologies for their processing.
	5	

7. Discipline objectives (as results from the *key competences gained*)

		• Knowledge of alloys for industrial use in terms of
7.1	General objective	composition-structure-properties correlation, heat treatments
		and specific processing methods, as well as standardization
		Knowledge of the general properties of metallic materials.
		• Deepening the correlation composition - structure - properties
		for metallic materials.
		Knowledge of the principles for the selection and processing of
		different alloys.
7.2	Specific objectives	• Alloy / application selection, including using industry standards.
		 Understanding the particularities of heat treatments for alloy
		classes.
		 Detailed knowledge of laboratory equipment in the field.
		 Operating with the aspects regarding the metallic materials to
		approach the situations from the industrial practice.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.Generalities in the study of metallic materials	2		

Q 1 Looture (aulia hue)	Number of	Teaching	Netes		
8.1. Lecture (syliabus)	hours	methods	Notes		
2.Metal alloys. Constituents. Linking properties-	2				
equilibrium diagrams. Alloy structure. Classification of					
alloys					
3.Non-alloy steels: Phases and constituents. Influence of	2				
carbon content on mechanical properties. Accompanying					
elements. Degree of deoxidation					
4.Alloy steels: Alloy elements. The influence of alloying	2				
elements in steels. Classification. HSS, UHSS steels					
5.Standardization of non-alloy and alloy steels. Steels for	2		Courses		
bearings. Refractory steels		MS Teams	Course		
6.Steels with special properties. Uses of steels	2	online lecture	support on		
7.Foundry pig iron	2		IVIS Leams		
8.Copper. Copper alloys: Brasses	2				
9.Copper alloys: Bronzes. Symbols	2				
10. Aluminium: Properties. Uses	2				
11. Aluminium alloys. Foundry alloys	2				
12. Deformable aluminium alloys	2	_			
13. Titanium and titanium alloys	2				
14. Magnesium and magnesium alloys. Zinc and zinc	2				
alloys. Nickel. Cobalt					
Bibliography	1				
9.2 Laboratory	Number	Teaching	Notos		
	of hours	methods	Notes		
1. Analysis of structural constituents in steels	2				
2. Linking structure-mechanical properties of a steel	2				
3. Foundry pig iron structure	2	Morking in			
4. Foundry aluminium alloys structure	2	the laboratory	15 % online		
5. Deformable aluminium alloys structure	2	, , ,			
6.Copper. Brasses. Bronzes: Structure, properties	2				
7. Titanium alloys structure	2				
Bibliography	I				
1. W. D. Callister Jr., Materials Science and Engineering. An introduction (7th Ed.), John Wiley & Sons					
Inc., 2007					
2. P. A. Schweitzer, Metallic materials. Physical, mechanical,	and corrosio	n properties, Ma	rcel Dekker,		
New York, 2003					

3. ASM Handbook (vol.1, 2), ASM International, 1996

4. H. Colan, V. Cândea, D. M. Salomie – Materials science. Vol. 1, Cluj-Napoca, U.T.Press, 2013;

5. Cândea, C. Popa, T. Marcu - Atlas, metallographic structures, Cluj-Napoca, U.T.Press 2012;

8.1. Lecture (syllabus) Number of hours Methods Notes	Notes
---	-------

6. V.Candea, C.Popa, N.Sechel, V.Buharu – Clasification and standardization of ferrous and non-ferrous alloys, UTPress, 2011;

7. C. Popa, V. Cândea, V. Şimon, D. Lucaciu, O. Rotaru – Biomaterials science. Metallic biomaterials, Cluj-Napoca, U.T.Press, 2008

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

 \checkmark Employers in the industrial environment expect engineers with this profile to know the metallic materials, their processing and treatment methods and to use the terminology correctly.

 \checkmark Knowledge of metallography and macro fractography is highly valued in companies with a mechanical profile.

 \checkmark The analytical program was adapted to the characteristics of the market in the field, both from the perspective of manufacturers, designers and service and maintenance companies.

 \checkmark The structuring of knowledge within the discipline allows an easy adaptation of engineers to changes and improvements of alloys used, as well as their processing technologies.

Activity type	10.1 Accossmont critoria	10.2 Assessment methods	10.3 Weight in the		
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade		
	Knowledge and				
10.4 Course	understanding of the	Online even on MS Teams	50 %		
	notions presented. Solving	Online exam on WS Teams	50 %		
	questions, problems				
	Project: content,		30 %		
	presentation, how to	Public speech			
10.5 Laboratory /	answer questions				
Project	Laboratory: how to work				
	in the laboratory; solving	MS Teams test	20 %		
tasks in laboratory work					
10.6 Minimum standard of performance					
Laboratory note great	er than or equal to 5; Project	note greater than or equal to 5			

Date of filling in:		Title Surname Name	Signature
9.04.2023	Lecturer	Lect. PhD. Eng. Violeta-Valentina Merie	
	Teachers in charge of application	Lect. PhD. Eng. Violeta-Valentina Merie	
		Lect. PhD. Eng. Călin-Virgiliu Prică	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	56,00

2. Data about the subject

2.1	Subject name				Sintered materials and products (modules)			
2.2	Course responsible/lecturer				S.l.dr.ing. Thalmaier Gyorgy			
2.3	Teachers in charge of seminars				S.l.dr.ing. Thalmaier Gyorgy			
2.4 Y	2.4 Year of study 4 2.5 Semester 7			7	2.6 Assessment	Exam		
2.7 5	2.7 Subject Formative category						DS	
cate	category Optionality						DOB	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	1
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography 2						20				
(b) Supplementary study in the library, online and in the field						8				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28			
(d) Tutoring							2			
(e) Exams and tests						2				
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 60										
3.9 Total hours per semester (3.4+3.8) 116										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
12	Competence	Basic knowledge of Technical Drawing, Materials Science and
4.2	competence	Materials Technology, Powder Metallurgy

5.1	For the course	Lectures online MS Teams/onsite
5.2	For the applications	Applications online MS Teams /onsite

Professional competences	Evaluation and proposing an optimal solution of technical problems related to processing of parts by powder metallurgy by applying concepts, theories and experimental methods.
Cross competences	Carrying out activities and exercising the specific roles of teamwork, on different hierarchical levels. Promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others, diversity and multiculturalism and continuous improvement of one's activity. The objective self-assessment of the need for continuous professional training, in order to be inserted on the labour market and to adapt to it's dynamics for personal and professional development. Effective use of multilingual skills and knowledge of information and communication technology

7. Discipline objectives (as results from the key competences gained)

		The appropriate use of standard evaluation to appreciate the
7.1 General objective	General objective	quality, merits and limitations of some processes,
	programs, projects, concepts, methods and theories.	
		Appropriate use of standard evaluation criteria and methods,
7 2	Spacific objectives	to appreciate the quality and the optimal solution of a
1.2	specific objectives	technical problems related to materials processed in
		field of powder metallurgy.

8. Contents

8.1. Locture (cyllabus)	Number of	Teaching	Notos
o.i. Lecture (synabus)	hours	methods	Notes
1. Metal powders. Definitions, classification, specific	2		
properties. Manufacturing technologies. Recap.			
2. The influence of alloying elements on the	2	Interactive	
mechanical properties of PM parts		methods	
3. Sintered structural parts. Design issues. Examples	10	using digital	Digital media
of technological itinerary		equipment,	content
4. Sintered anti-friction materials	3	materials	included
5. Sintered friction materials	3	rases	
6. Porous materials	4	studies	
7. Sintered materials for electrical contacts	2		
8. Special sintered materials	2		
Bibliography			

1. Metals Handbook v. 7. Powder Metallurgy, Powder Metallurgy ASM, Ohio, USA, 1984.

2. Iron and Steel powders for sintered components, Höganäs Höganäs AB, Höganäs,

Sweeden, 2017

- 3. Material and Powder Properties; Handbook 1; Hoganas Handbook for Sintered Components; Hoganas AB; 2004.
- 4. Production of Sintered Components; Handbook 2; Hoganas Handbook for Sintered Components; Hoganas AB; 2004.
- 5. Design and Mechanical Properties; Handbook 3; Hoganas Handbook for Sintered Components; Hoganas AB; 2004.
- 6. German, R.M; Powder Metallurgy & Particulate Materials Processing; Metal Powder Industries Federation; Princeton, NJ; 2005.

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
	of hours	methods	
L. 1. Safety rules in the lab, presentation of the laboratory	2		
works.			Prepare lab
L. 2. Manufacturing and characterisation of a sintered	4		
structural part.			2-4
L. 3. Manufacturing and characterisation of a sintered	4	Duesties	
porous bearing.		training	
L. 4. Manufacturing and characterisation of a sintered	4	training	
porous part. Measuring the sintering degree			Prenare a
			manufacturing
Project			project for the
Design of the manufacturing technology of a specific PM	14]	given part.
part			0 - 1

Bibliography:

- 1. German, R.M; Powder Metallurgy & Particulate Materials Processing; Metal Powder Industries Federation; Princeton, NJ; 2005
- 2. Iron and Steel powders for sintered components Handbook 0, Höganäs Höganäs AB, Höganäs, Sweeden, 2017
- 3. Production of Sintered Components; Handbook 2; Hoganas Handbook for Sintered Components; Hoganas AB; 2004

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be used in design, execution and control activities in the field of powder metallurgy and other industrial sectors where powders are used.

Activity type	10.1 Assessment criteria	Assessment criteria 10.2 Assessment methods				
10.4 Course	-10 questions Written exam 2 h		75%			
10.5 Seminars	Overall activity + quiz	Oral/written exam 0.5 h	25%			
Laboratory/Project			2370			
10.6 Minimum standard of performance						
Minimum grade of 5 obtained at course exam and applications tests.						

Date of filling in:		Title Surname Name	Signature	
05.05.2023	Lecturer			
	Teachers in charge of	sl.dr.ing Gyorgy Thalmaier		
	application			
Date of approval in th	ne department	Head of department		
26.06.2023		Ass.prof.dr.eng. Mariana Pop		
Date of approval in 10.07.2023	the faculty	Dean Prof.dr.eng. Cătălin Popa		

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2 Faculty		Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	57

2. Data about the subject

2.1	Subject name			Cerar	ni	c materials			
<u>, , , , , , , , , , , , , , , , , , , </u>	Course responsible /lesturer			Asso	cia	ite professor Amalia N	lesaros		
2.2	course responsible/lecturer		Asso	Associate professor Traian Florin Marinca					
22	2.3 Teachers in charge of seminars			Asso	Associate professor Amalia Mesaros				
2.5				Associate professor Traian Florin Marinca					
2.4 Year of study 4 2.5 Seme			2.5 Seme	ster	1	2.6 Assessment	examination		
2.7 Subject Formative cat			egory				DS		
category Optionality								DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Projec	t 0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Projec	t O
3.7 Individual study:						1	,	I	, ,	
(a) Manual, lecture materia	l and	notes, bib	liograph	y						24
(b) Supplementary study in the library, online and in the field						15				
(c) Preparation for seminar	s/labo	oratory wo	rks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		14
(d) Tutoring										2
(e) Exams and tests										3
(f) Other activities						0				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	It's not necessary
4.2	Competence	Basics of chemistry, physics and materials science

5.1	For the course	Presence at Technical University of Clui-Napoca. Gadgets turned off
0.1		

		during the course.		
5.2	For the applications	Presence at laboratories is mandatory. Gadgets turned off during		
5.2	(laboratory)	the laboratories. Homework is required.		

		- Basi	c concepts on chemistry physics of silicates/oxides, non-oxidic, composites, glasses,				
		vitro	ceramic and the technologies for their synthesis in various forms and shapes.				
		- Prac	tical skill for elaboration and characterisation of ceramic materials.				
la	ces	- Capa	acity of determining characteristics and to interpret experimental data for ceramic				
sior	ten	mate	erials.				
ofes	upe	- Knov	edge in phase diagrams for oxides.				
Pro	Con	- Ther	- Thermal treatments applied to ceramics.				
		- To c	orrelate the characteristics of a ceramic material at a certain stage of processing with the				
		tech	nological flow of processing.				
		- Corr	elations between characteristics of ceramic materials and their industrial applications.				
	es	-	Accomplishing the tasks in concordance with the imposed terms and requirements.				
SS	enc	-	Solving the tasks in accord with the general objectives.				
Cro: pet		-	Permanent documentation and study.				
	mo						
	0						

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of competences in the field of ceramic materials.
7.2	Specific objectives	Obtaining skills for preparation and characterisation of ceramic
		materials.

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes
0.1. 200010 (09100000)	of hours	methods	Notes
1. General aspects related to ceramic materials and	2		
technologies.	_		
2. Crystalline, amorphous and vitrocrystalline ceramic		Lecture	
structures. Structural defects. Nonstoichiometric. Solid	2		
solution.		PowerPoint	
3. Glass structures. Vitroceramics	2	presentation	
4. Phase diagram in ceramics. Phase diagram of	2	Intoractivo	
technological interests.	2	tooching mode	
5. Ceramic processing - fabrication method, calcination and	2	teaching mode	Multimedia
sintering	2	Dialogue -	
6. Transformation in ceramics. Phase transformation,	2	conversation	Blackboard
diffusion. Solid state reactions. Sintering.	2	professor -	
7. Ceramic microstructures (sintered, porous, fibres, films).	2	student	
8. Mechanical behaviour of ceramics materials. Examples.	2		

Applications.			
9. Thermal behaviour of ceramic materials. Examples.		-	
Applications.	2		
10. Electric and electronic behaviour of ceramic materials.	n		
Examples. Applications.	Z		
11. Magnetic behaviour of ceramic materials. Examples.	ſ		
Applications.	Z		
12. Optical behaviour of ceramic materials. Examples.	ſ		
Applications.	Z		
13. Chemical behaviour of ceramics. Examples. Applications.	2		
14. Ceramic materials selection and recycling.	2		
Bibliography			
[1]. W.D. Callister, Materials Science and Engineering-An	Introductio	on, John Wiley&S	Sons, Inc. new
York, 2000. [2] D.W. Bishardson, Modern Coromia Engineering, Marc	al Dakkar	Ina Naw Vork 1	002
[2]. D. W. Kichardson, Wodern Ceranne Engineering, Marc	Number	Teaching	
8.2. Laboratory	of hours	methods	Notes
1. General presentation of ceramic materials. Ceramic			
calculations.	2		
2. Ceramic structures. Phase diagram in ceramics.		-	
Defects.	2		
3. Synthesis of a glass. Density. Calculus of additive		-	
properties.	2		
4. Obtaining of a dense ceramic part. Calcination		Explication,	Blackboard,
experiments.	2	conversation,	computer.
5. Porous ceramic synthesis by polyurethane foam	2	Case Study.	
template	2		
6. Temperature dependence of resistivity for ceramic	2	-	
materials.	Z		
7. Optical microscopy investigation of ceramic	n]	
structures.	Z		
Bibliography			

 W.D. Callister, Materials Science and Engineering-An Introduction, John Wiley&Sons, Inc. new York, 2000.

[2]. D.W. Richardson, Modern Ceramic Engineering, Marcel Dekker, Inc. New York, 1992.

[3]. <u>www.mrs.org</u>, www.acers.org

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences will be necessary for the engineers which will work in the fields of ceramic materials including preparation, characterisation and applications.

	10.1 According to criteria	10.2 Assessment	10.3 Weight
Activity type	10.1 Assessment Cinteria	methods	in the final

			grade			
10.4 Course	Answers to the questions related to the subjects	Written test - 2	750/			
10.4 Course	presented at courses (C).	hours	1570			
10.5	Laboratory test (1)	Written test – 1	250/			
Laboratory		hour	2370			
10.6. Minimum standard of performance						
General examination mark \geq 5 (0.75C+0,25L) - L \geq 5 and C \geq 5.						

Date of filling in:		Title Surname Name	Signature
14.03.2023	1 4	Associate professor Amalia Mesaros	
	Lecturer	Associate professor Traian Florin Marinca	
	Teachers in charge of application	Associate professor Amalia Mesaros Associate professor Traian Florin Marinca	

Date of approval in the department 26.06.2023

Date of approval in the faculty 10.07.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	58,00

2. Data about the subject

2.1	Subject name				Materials Selection and Design			
2.2	Course responsible/lecturer				S.I.dr.ing. Prica Virgiliu-Calin – calin.prica@stm.utcluj.ro			
2.3	Teachers in charge of seminars				S.I.dr.ing. Prica Virgiliu-Calin – calin.prica@stm.utcluj.ro			
2.4 Year of study 4 2.5 Semester 1		2.6 Assessment	Ex					
2.7 Subject Formative category						DS		
category						DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	3.3 Proje	} ect	1
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	3.6 Proje	5 ect	14
3.7 Individual study:				1	1					
(a) Manual, lecture materia	and	notes, bib	liograph	iy					3	5
(b) Supplementary study in the library, online and in the field						1	3			
(c) Preparation for seminar	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						7	7		
(d) Tutoring						()			
(e) Exams and tests									3	3
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4,00										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5.1	For the course	Course - online to MS Teams platform		
5.2	For the applications	Works on groups of students, carried out by retation, onsite		
5.2	- project	works on groups of students, carried out by rotation - onsite		

_		
		• Knowledge, understanding and use of terminology in the field of material selection and design;
_	S	• Using knowledge in the area of natural sciences to understand the relationship composition -
ona	nce	structure - properties - use for materials;
ete		• Knowledge of the basic principles regarding the design and selection of engineering materials;
rofe	dmo	Knowledge of material properties;
<u>م</u>	S	 Knowledge of the main categories of materials for industrial use;
		• Development of projects in which the design and selection of materials is necessary.
	es	Use of dedicated software;
SS	enci	 Awareness by students of the need for continuous information in the field of design and
Cro	pet	selection of materials.
	mo	
	0	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Familiarization with the terminology in the field, with the principles of design and selection of materials for engineering use.
7.2	Specific objectives	 Knowledge of the general properties of materials; Understanding the composition - structure - properties correlation for metallic, ceramic, polymeric and composite materials; Understanding the criteria underlying the design and selection of materials; Understanding the principles of material selection; Formation of an adequate technical language;

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introduction to the design and selection of materials.			
The composition - structure - properties - uses correlation.			
The main classes of materials.			
2. The influence of the structure on the materials			
properties.			
3. Designing materials. Overview			
4. Selection criteria of materials			
5. Material property charts			
7. Identification of the performance indices of the			
materials			
8. Material selection charts			

9. Selection of materials based on mechanical strength		
10. Selection of materials based on machinability		
11. Selection of materials based on hardening		
12. Selection of tool materials		
13. Eco design of materials.		
14. Eco selection of materials.		

Bibliography

- 1. Domsa S., Selectia si proiectarea materialelor, UTPres, Cluj Napoca, 2006
- 2. Domsa S., Bodea M., Prica C, Baze de date Studii de caz Proiectarea Materialelor, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2005
- 3. Ashby M.F., Materials Selection in Mechanical Design, Elsevier, 2005
- 4. ASM Handbook, vol. 20, Materials Selection and Desing, 1997

2.2. Seminary /Laboratony/Droject	Number	Teaching	Notos		
	of hours	methods	Notes		
1. Presentation of the CES Selector - selection software.					
2. Case study: Selection of materials for pressure vessels		-			
3. Case study: Selection of materials for fly-wheel		-			
4. Case study: Selection of materials for making a		-			
connecting rod					
5. Case study: Selection of materials for making the blades		-			
of a fan					
6. Case study: Selection of materials for making a bicycle		-			
frame					
7. Application of CES Selector software in the material					
selection process					
Bibliography					
- Domsa S., Bodea M., Prica C, Baze de date – Studii de caz – Proiectarea Materialelor, Ed. Casa					
Cartii de Stiinta, Cluj-Napoca, 2005					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

- Employers in the industrial environment expect engineers with this profile to know the materials, their design and selection methods and to use the correctly terminology;

- The structuring of the knowledge within the discipline allows an easy adaptation of the engineers to the changes that appear in the field of using new materials.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
---------------	--------------------------	-------------------------	--------------------

			final grade		
	Knowledge and				
10.4 Course	understanding of notions	Final exam (14 questions)	50 %		
	in the field of materials;				
10 E Sominars	Preliminary theoretical				
/Laboratory/Droject	preparation; presentation	note for the project activity	50 %		
	of case studies;				
10.6 Minimum standard of performance					
• The minimum note to final exam = 5					

Date of filling in:		Title Surname Name	Signature
17.05.2023	Lecturer	Lect.dr.ing. Prica Virgiliu-Calin	
	Teachers in charge of	Lect.dr.ing. Prica Virgiliu-Calin	
	application		

Date of approval in the department 26.06.2023

Date of approval in the faculty 10.07.2023

Ass.prof.dr.eng. Mariana Pop

Head of department

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	59,00

2. Data about the subject

2.1	Subject name				Polymeric materials			
2.2	Course responsible/lecturer				PhD eng. Professor Violeta Popescu violeta.popescu@chem.utcluj.ro PhD eng. lecturer Gabriel Batin Gabriel.batin@stm.utcluj.ro			
2.3	Teachers in charge of seminars				PhD eng. Professor Violeta Popescu violeta.popescu@chem.utcluj.ro PhD eng. lecturer Gabriel Batin Gabriel.batin@stm.utcluj.ro			
2.4 Y	ear of study	IV	2.5 Semester	7	2.6 Assessment	С	DS/DI	
2.7 5	2.7 Subject Formative category				DS			
category Optionality				DI				

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.0
(b) Supplementary study in the library, online and in the field						1	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	0			
(d) Tutoring							0			
(e) Exams and tests										3
(f) Other activities							0			
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Chemistry, Materials Science, Materials Technology

5.1	For the course	
5.2	For the applications	Bractical activities are mandatory
	Laboratory	Practical activities are mandatory.

		•	To acquire the main notions related to the classification, the structure, and the properties of
			plastic materials.
la	ces	•	To know the principles off chemical reactions, involve in the obtaining of polymers.
sior	teno	•	To evaluate the impact of plastic materials on environment.
ofes	pei	•	To know the main fabrication processes for parts from plastic.
Pro	con	•	To know to identify certain polymeric materials base on their properties.
		•	To be able to establish a fabrication technology.
		•	To be able to use the main tools used in plastic materials characterization.
		•	To know to establish the operation succession and technology phases.
Ces		•	To know to design the technological process for fabrication of products from polymers.
eter		•	To be able to design the tools for fabrication of parts from polymers.
a	-	•	To be able to choose the most appropriate material as a function of the characteristics of
s co			manufactured parts.
ros		•	Experimentally results interpretation of the main parts characteristics, and to draw
			appropriate conclusions.

7. Discipline objectives (as results from the key competences gained)

		The development of competence related to polymeric materials
7.1	General objective	obtaining, characterization and processing.
		1. The understanding of the theoretical principles of the
		obtaining of polymeric materials by polymerization,
		polycondensation, polyaddition;
		2. The understanding of the correlation between the structure
		of polymers, their properties and processing methods suitable
		for each type of polymeric material (thermoplastics, thermosets,
7.2	Specific objectives	and elastomers);
		2. To know the equipment used in the manufacture of plastic
		parts;
		2. Learning of the plastics processing processes;
		3. Learning of the technical documentation on the design of
		technological processes for the manufacturing of plastic parts;
		4. Environmental problems related to the processing of plastics.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Polymeric materials. Definitions and classification of	2		

nolymeric materials					
2 The obtaining reactions of polymers (chain	ן ר	-			
2. The obtaining reactions of polymers (chain polymerization, polycondensation, polyaddition)	2				
2. The structure and the properties of polymore. The	2	-			
5. The structure and the properties of polymers. The	2				
Thermonlaste electomers duramers					
A Event and their englishing	2	-			
4. Examples of polymers and their applications.	2				
Polyoletins, polyesters, polycarbonates, polyamides.		-			
5. Technologies and equipment for the preparation of	2				
plastics for processing.		-			
6. Technology of plastics processing by calendering.	2				
Equipment.					
7. Technology of processing plastics by extrusion.	2				
Equipment. The extrusion heads.					
8. Technology of processing plastics by injection. The	2				
principle of injection. Stages of the injection process.					
Injection machines. Component parts. Injection nozzles.					
Injection matrices.					
9. Technology processing by thermoforming and blowing	2				
of plastics.					
10. Optimization of plastics processing processes.	2				
11. The technology of assembling plastic parts. Mechanical	2				
assemblies, by welding and soldering.					
12. Polymers used in automotive industry.	2				
13. Polymers used in medicine.	2				
14. Recycling of polymer materials.	2				
 Bibliografie 1. Popescu Violeta, Horovitz O., Damian Laura, Compozite cu matrice organică, Editura UTPRES, 2001. 2. Popescu Violeta, Horovitz O., Rusu Tiberiu, Materialele polimerice şi mediul. Editura Mediamira, Cluj-Napoca, 2005. 3. Horovitz O., Popescu Violeta, Moldovan Marioara, Prejmerean Cristina, Macromolecule şi compozite. Aplicaţii experimentale, Editura Mediamira, Cluj-Napoca, 2005. 4. Editura O. Podesene escele escele					
4. Fetecau, C., Prelucrarea maselor plastice, Lit. Universității "Dunărea de jos" Galați, 1996. 5. Iclănzan, T., Plasturgie, Litografia Universității Tehnice Timisoara, Vol. 1995.					
6. Horum.S., s.a., Memorator de materiale plastice, Seria Polimeri, Ed. T., Bucuresti, 1986.					
7. Warson, H. (2001). Fundamentals of Polymer Chemistry. <i>Appl. Synth. Resin Latices</i> , 1-48.					
8. Billmever, F. W. (1984). Textbook of polymer science. John Wiley & Sons					
9. Koltzenburg, S., Maskos, M. & Nuvken, O. (2017). Polyme	r Chemistry (pp. 477-491). Ber	lin. Germany:		
Springer.			, , .		

10. Stevens, M. P. (1990). *Polymer chemistry* (Vol. 2). New York: Oxford university press.

11. Sun, S. F. (1994). Physical chemistry of macromolecules. *New York: John Willey and Sons Inc.*

8.2. Laboratory	Number of hours	Teaching methods	Notes
1. Polymers identification based on their properties.	2	Based on	
2. The obtaining of polymer materials by radical	2	PowerPoint	

polymerization (bulk and emulsion polymerization).		presentations
3. The study of behavior of plastics to mechanical tests	2	
(elongation, bending)		
4. The determination of hardness of plastic materials.	2	
5. The determination of viscosity of polymers.	2	
6. The determination of influence of temperature and	2	
pressure on the injection process.		
7. Polymers recycling.	2	

Bibliography

- 1. Ossi Horovitz, Violeta Popescu, Polymers and organic matrix composites. Laboratory works, pdf format.
- 2. Mihai, R., ş.a., Prelucrarea materialelor plastice, Editura Tehnică, București, 1963.
- 3. Liana Hancu, Horatiu Iancau, Tehnologia materialelor nemetalice, Editura Alma Mater, Cluj-Napoca, 2003.
- 4. Ossi Horovitz, **Violeta Popescu**, Marioara Moldovan, Cristina Prejmerean, Macromolecule şi compozite. Aplicații experimentale, Editura Mediamira, (ISBN 973-713-053-7) **2005**, 207 pag.
- 5. Brânduşan L, Pavel C., Mureşan R., Tehnologia Materialelor, Îndrumător pentru lucrări de laborator, Editura U.T. PRES 1999, Cluj-Napoca.
- 6. Mocanu D.R., Încercările materialelor, Vol I-II, Editura Tehnica București, 1982.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competences will be required in design, execution and control activities in the field of processing non-metallic materials, production in SMEs and other industrial sectors involving processing processes of these types of materials.

Activity type	10.1 Accossment criteria	10.2 Assessment methods	10.3 Weight in the					
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade					
10.4 Course	The exam consists of a quiz with multiple answers and the development of topics related to polymer	On-line or on-site as a function of the situation (2 hours)	0.75					
	processing methods.							
10.5 Laboratory	Solving a practical problem related to laboratory work. Synthesis material.	On-line or on-site as a function of the situation (2 hours)	0.25					
10.6 Minimum standard of performance								
Colloquium (grade C); Laborator y (grade L); Synthesis material (grade MS);								
N=0,5C+0,25L+0,25M	N=0,5C+0,25L+0,25MS;							

Condition for obtaining credits: N≥5; C≥5, L≥5; MS≥5

Date of filling in:		Title Surname Name	Signature
20.04.2023	Lecturer	Prof PhD. Eng. Violeta Popescu	
		Lecturer PhD. Eng. Gabriel Batin	
	Teachers in charge of application	Prof PhD. Eng. Violeta Popescu	
		Lecturer PhD. Eng. Gabriel Batin	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	60,00

2. Data about the subject

2.1	Subject name				Computer-aided Design and Manufacturing			
2.2	Course responsible/lecturer				Conf.dr.ing.Dan Frunza Dan.Frunza@ip		Dan.Frunza@ipm.u	tcluj.ro
2.3	Teachers in charge of seminars			Conf.dr.ing.Dan Frunza Dan.Fr		Dan.Frunza@ipm.u	.Frunza@ipm.utcluj.ro	
2.4 ۱	2.4 Year of study IV 2.5 Semester 7			2.6 Assessment	С			
2.7 <mark>5</mark>	2.7 Subject Formative category						DS	
category Optionality						DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar		3.3 Laboratory	2	3. Proi	3 ect	
3.4 Total hours in the curriculum	Total hours in the curriculum 42 of which 3.5 14 3.6 3.6 28		3. Droi	3.6 Droject							
3.7 Individual study:			Course		Seminar		Laboratory		PIUJ	ect	
(a) Manual, lecture materia	and	notes, bib	liograph	У						1	0
(b) Supplementary study in the library, online and in the field							C)			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							2	0			
(d) Tutoring										C)
(e) Exams and tests										1	3
(f) Other activities							C)			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Technical Drawing, Material Resistance
4.2	Competence	

5.1	For the course	
5.2	For the applications	80% Teams
	seminar / lab / proj.	20% onsite

Professional	competences	Design sustain	of high-performance technologies for the processing of materials based on the concept of able development and under conditions of high quality of the products obtained.
Cross	competences	1. 2.	The use of expert knowledge for the design of high-performance technologies, under quality conditions of the products obtained Integrated use of the conceptual and methodological apparatus and a minimum data set for the design of high-performance material processing technologies

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of high-performance technologies specific to materials engineering using an innovative spectrum of qualitative methods.
7.2	Specific objectives	Definition of techniques for designing high-performance materials engineering technologies, environmentally sustainable.

8. Contents

8.1. Locture (syllabus)	Number of	Teaching	Notos
o.i. Lecture (synabus)	hours	methods	Notes
1.Finite element method basics.	2		
2 Static analysis (stresses, displacements, strains and	2		
factor of safety), using the finite elements method. Static			
Analysis for assemblies (contact).			
3. Frequency analysis. Analysis of thermal transfer	2		
processes.			
4.Buckling Analysis. Drop test Analysis.	2		
5. Design study. Optimizing the shape and size of an object,	2		
based on the loads and restrains to which it is subjected.			
6. Engineering methods in CAD-CAM (Manipulation of	2		
geometry, The Overlay Trial, 3D modeling), The Structure			
of a CNC			
7. Creating a CNC program (SolidCam program).	2		

Bibliography

1. Groover, M.P., Zimmers, E.W., "CAD/CAM: Computer Aided Design and Manufacturing", Prentice-Hall International Editions, 1984

2. Tizzard, A., "An introduction to Computer-Aided Engineering", McGraw-Hill Book Company, 1994

0.2. Complete my (Depice of	Number	Teaching	Nichon		
8.2. Seminars / Laboratory/ Project	of hours	methods	Notes		
1. Stress and strain analysis of a plate.	2				
2. Stress and strain analysis in a brachet.	2	-			
3.Stress and strain analysis in a rotating flywheel.	2	-			
4. Buckling and Frequency Analysis.	2				
5. Stress and strain analysis in a Shrink fit assembly.	2				
6. Analysis of the thermal gradient in the insulation of a pipe and in a wall of a metallic casting Mould (Steady state analysis).	2	Case study			
7. Analysis of thermal induced Stresses in a cylindrical part	2				
of martensitic stainless steel X20Cr13 (Transient analysis).					
8.Design of pressure vessels.	2				
9.Drop test analysis	2				
10.Creating a Design Study. Optimize the shape and mass	2				
of a part.					
11-12. The Structure of a CNC, setting up the tools,	4				
according to the machine coordinate system and the					
position of the part.					
13-14 Creating a CNC program (SolidCam program).	4				
Bibliography					
1. Solidworks and Solidcam help and tutorials					
 Groover, M.P., Zimmers, E.W., "CAD/CAM: Computer Aided Design and Manufacturing", Prentice- Hall International Editions, 1984 Tizzard, A. "An introduction to Computer-Aided Engineering", McGraw-Hill Book Company, 1994 					
5. Hzzaru, A., An introduction to computer-Alded Engineering , McGraw-Hill Book Company, 1994					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Solving a problem and answering 5 questions in theory	Written test – duration of evaluation 1.5-2 hours	75%			
10.5 Seminars /Laboratory/Project	Solve an app on computer	Practical examination on computer	25%			
10.6 Minimum standard of performance						

Date of filling in:		Title Surname Name	Signature
15.04.2023	Lecturer	Conf.dr.ing Dan Frunza	
	Teachers in charge of	Conf.dr.ing.Dan Frunza	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	61.10

2. Data about the subject

2.1	Subject name				Materials processing technologies		
2.2	Course responsible/lecturer				Assoc. prof. Pop Mariana,		
2.3	Teachers in charge of seminars				Lecturer Sas Boca Monica		
2.4 ۱	2.4 Year of study IV 2.5 Semester 7		7	2.6 Assessment	Exam		
2.7 9	7 Subject Formative category					DS	
cate	category Optionality				DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3		3.3	1	3.3	5	
)		Course	I	Seminar		Laboratory	-	Proje	ect	
3.4 Total bours in the curriculum	12	of which	3.5	28	3.6		3.6	1/	3.6	;	
	72	or writeri	Course	20	Seminar		Laboratory	14	Proje	ect	
3.7 Individual study:											
(a) Manual, lecture materia	and	notes, bib	liograph	у						2	8
(b) Supplementary study in	the lil	orary, onli	ne and i	n the	e field					8	3
(c) Preparation for seminar	s/labo	ratory wo	rks, hon	newo	ork, report	ts, pc	ortfolios, essa	ys		1	4
(d) Tutoring						4	Ļ				
(e) Exams and tests										4	Ļ
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8)100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Materials science and engineering, Theory of Plastic deformation
		and fracture, Heat treatment, Computer graphics, Plastic
		deformation processing processes
	Competence	Calculation notions: stresses, deformations, forces, energy,
4.2		mechanical work. Notions of computer operation; Use of computer
		aided design software to make 2D and 3D geometric models.

5. Requirements (where appropriate)

E 1	For the course	Theory of plasticity and materials fracture, Technological processes
5.1		in materials engineering I, II (Hate treatments, Plastic deformation)
5.2	For the applications	

6. Specific competences

		To apply the basic principles and methods for solving the problems appeared in the exploitation
		of the materials processing technologies; To use the standard criteria and methods for the
la	ces	analysis, evaluation of materials processing technologies and their implementation in
sior	tenc	accordance with the norms of quality, environment and labor protection; Calculate the
ofes	ipei	deformation energy, pressure and deformation force corresponding to each technology; To
Pro	con	measure process parameters; To perform in Excel the graphical processing of the results
		obtained at the experimental tests; To analyze and interpret the results obtained in the
		experimental tests.
	es	Promoting logical, convergent and divergent reasoning, the use of rigorous, efficient and
	ĕ	responsible work strategies in conditions of professional autonomy and independence based
SS	Ъ	responsible work strategies, in conditions of professional autonomy and independence, based
Cross	peter	on the principles, norms and values of the code of professional ethics. Effective use of
Cross	competer	on the principles, norms and values of the code of professional ethics. Effective use of multilingual skills and knowledge of information and communication technology.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of skills in the design of processing technologies by plastic deformation, in accordance with the norms of quality, environment and work safety, in support of professional training.
7.2	Specific objectives	 Assimilation of theoretical knowledge on the basic principles in the design of processing technologies by plastic deformation of materials on hammers and presses. Development of skills for performing specific calculations in the elaboration of processing technologies by plastic deformation of materials and in the design of tools.

8. Contents

8.1. Lecture (syllabus)		Teaching methods	Notes
1. Forgeable and semi-finished materials used in plastic	2		
deformation processing. Processes for cutting semi-			
finished products. Choice of cutting procedure. Calculation		_	
of the cutting force and choice of the cutting machine.		Exposure,	Video-
Heating of semi-finished products for plastic deformation.		conversation	projector
Establishing the optimal temperature range for plastic			
deformation (permissible temperature range,			
technological; determination of heating speed and			

duration, induction heating).				
2. Upsetting: Discharge variants, execution modes and	2			
S.D.Vs. Technological elements at discharge. Choice of the				
initial semi-finished product and of the discharge				
equipment.				
3. Semi-finished products used for plastic deformation;	2	-		
cutting semi-finished products for plastic deformation;				
Thermal regime of plastic deformation; Advantages and				
disadvantages of plastic deformation processes compared				
to other manufacturing processes.				
4. Equipment used for plastic deformation. Constructive	2			
principles, technical characteristics.				
5 Forging processes; basic operations for open die forging:	2			
upsetting, stretching, drilling, bending, twisting				
(technological elements, materials); Applications.				
6. Close die forging of metals and alloys. Advantages	2	-		
disadvantages. Principles, deformation conditions,				
materials, deformation parameters. Applications.				
7. Extrusion of parts and semi-finished products. Methods,	4			
advantages disadvantages. Principles, deformation				
conditions, materials, deformation parameters.				
Applications.				
8. Drawing of wires, bars, tubes. Advantages	2			
disadvantages. Principles, deformation conditions,				
materials, deformation parameters. Applications.				
9. Semi-finished rolling processes, finished products;	2			
Principles, deformation conditions, materials, deformation				
parameters. Applications.				
10. Plastic sheet deformation processes. Deep-drawing	2			
and stamping; Principles, deformation conditions,				
materials. Applications.				
11. Operations after plastic deformation; Criteria for	2			
choosing the optimal technology for processing a piece.				
Applications.				
12. Non conventional plastic deformation processes.	2			
13. Aspects regarding the simulation of plastic deformation	2	-		
processes. Applications				
Bibliography				
Altan, T., s.a., Cold and hot forging, ASM International, 2005,				
Dieter, G., Mechanical metallurgy, McGraw Hill, 1988,			000	
Hostord, W.,F., Caddell, R.,M., Metal forming, mechanics and	i metallur ring ongin	gy, Prentice Hall, 1	.993.	
Laue, K., Stenger H., Extrusion, American Society for Metals, 1981,				

Pop, M., Plastic deformatiom, Ed. Mega, 2014

Schey, J., A., Tribology in Metalworking, American Society for Metals, 1984.

Metals Handbook, Vol.14, Forming and Forging, Ninth Edition

8.2. Seminars /Laboratory/Project	Numbe r of hours	Teaching methods	Notes			
1. Prezentarea lucrarilor	2					
2.Gaurirea cu dorn plin si tubular	2					
3.Matritarea cu bavura, Matritarea fara bavura: stabilirea	2	Exposition				
fortei de matritare		exposition,	Everimental			
4.Studiul influentei parametrilor geometrici ai zonei de	2	experimental	installations			
deformare asupra fortei de extrudare		tests	computers			
5. Trefilarea sarmelor: stabilirea fortei de trefilare	2	simulations software				
6.Stabilirea fortei de deformare la laminare	2					
7. Aplicarea softului Forge in analiza procedeelor de	2					
deforamre plastica. Compararea rezultatelor obtinute prin						
simulare cu cele experimentale.						
Bibliography						
Neag, A., Pop, M., Plastic Deformation, Aplication, UTPress, 2009.						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who carry out their activity either in the design workshops / research laboratories or in the productive sections.

	10.1 Accossment criteria	10.2 Assessment methods	10.3 Weight in the		
Activity type	10.1 Assessment cittena	10.2 Assessment methods	final grade		
10.4 Course	On-going evaluation				
	based on 2 tests and final	Final written evaluation -	75%		
	evaluation (problems and	duration of evaluation 2 hours			
	questions from theory)				
10.5 Laboratory	On-going evaluation				
	based on discussions and	Discussions, tests - duration of	25%		
	self-evaluations and final	evaluation 1 hour	23%		
	evaluation by test.				
10.6 Minimum standard of performance					
Promoting laborator activity					

Date of filling in:		Title Surname Name	Signature
10.04.2023	Lecturer	Assoc.prof.Pop Mariana	
	Teachers in charge of application	Assoc.prof.Pop Mariana	
Date of approval in th	ne department	Head of departm	nent
26.06.2023		Ass.prof.dr.eng.	Mariana Pop
Date of approval in the faculty 10.07.2023		Dean Prof.dr.eng. Cătă	ilin Popa
1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	61,20

2. Data about the subject

2.1	Subject name				Ecomaterials		
2.2	Course responsible/lecturer				S.l.dr.ing. Thalmaier Gyorgy		
2.3	Teachers in charge of seminars				S.l.dr.ing. Thalmaier Gyorgy		
2.4 Year of study 4 2.5 Semester 7		2.6 Assessment	Exam				
2.7 Subject Formative category						DS	
category Optionality						DOB	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Projec	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Projec	0
3.7 Individual study:				1		1	· · ·	1		
(a) Manual, lecture materia	l and	notes, bib	liograph	ıy						18
(b) Supplementary study in the library, online and in the field							-			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								14		
(d) Tutoring								2		
(e) Exams and tests							2			
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 36										
3.9 Total hours per semester (3.4+3.8) 78										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Basic knowledge of Technical Drawing, Materials Science and
4.2		Materials Technology

5.1	For the course	Lectures online MS Teams/onsite
5.2	For the applications	Applications online MS Teams /onsite

Professional	Discuss the concept "sustainable development" and analyse environmental, social and economic perspectives on materials development. Give an overview of toxicological effects on human and ecology from materials production and usage. Discuss energy usage and energy-relevant materials from sustainability perspective.
Cross competences	Give an overview of the application of the legislation within the environmental area for material exploitation, production and usage. Apply simplified life cycle assessment methodology. Describe the structure of the environmental management system ISO 14001 and how to implement it.

7. Discipline objectives (as results from the key competences gained)

		This course looks at where important materials in products we
7.1	General objective	use every day come from and how these materials can be used
		more efficiently, longer, and in closed loops.
7.2		In addition to providing many cases of managing materials for
		sustainability, the course also teaches skills and tools for
	Specific objectives	analysing circular business models and promotes development
		of your own ideas to become more involved in the transition to
		a Circular Economy.

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes		
	hours	methods			
1. General issues about ecology, pollutants and	4				
pollution					
2. Recycled materials	2]			
3. Renewable materials	2	Interactive			
4. Materials for efficiency	2	methods using	Digital modia		
5. Materials for waste treatment	4	aguinment			
6. Materials for reduction of environment load	2	video	included		
7. Materials for easy disposal or recycle	2	materials	included		
8. Hazardous free materials	2	cases studies			
9. Materials for reducing human health impact	2				
10. Materials for energy efficiency	3				
11. Materials for green energy	3				
Bibliography					

1. Ashby, M. F., Materials and the environment : eco-informed material choice, Oxford: Butterworth-Heinemann, 2009

8.2 Seminars /Laboratory/Project	Number	Teaching	Notes		
	of hours	methods	Notes		
1. Safety rules in the lab, presentation of the laboratory	2				
works.					
2. Materials recycling and upcycling	2	Practical	Prepare lab		
3. Industrial waste valorisation	2	training	report for		
4. Energy production, storage and reduction of energy use	2		labs 2-6		
5. Eco building materials	2				
6. Functionally graded materials	4				
Bibliography:					
1 Common D.M. Douider Metallumu & Doutinulate Materials Dracessing, Metal Douider Industries					

- German, R.M; Powder Metallurgy & Particulate Materials Processing; Metal Powder Industries Federation; Princeton, NJ; 2005
- 2. Ashby, M. F., Materials and the environment: eco-informed material choice, Oxford: Butterworth-Heinemann, 2009
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be used in design, execution and control activities in the field materials. Up-to-date technical skills and state-of-the-art technological knowledge.

An entrepreneurial mindset, focused on the sustainability of industrial activities.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	5-10 questions	Written exam 2 h	75%		
10.5 Seminars	Overall activity + short	Oral/written exam 0.5 h	25%		
/Laboratory/Project quiz from lab reports					
10.6 Minimum standard of performance					
Minimum grade of 5 obtained at course exam and laboratory tests.					

Date of filling in:		Title Surname Name	Signature
05.05.2023	Lecturer	sl.dr.ing Gyorgy Thalmaier	
	Teachers in charge of	sl.dr.ing Gyorgy Thalmaier	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	62

2. Data about the subject

2.1	Subject name				Composite Material	S	
2.2		sciblo	/lecturer		Lect. dr.ing. Sechel	Argentina-Niculina -	
2.2	2.2 Course responsible/lecturer				Niculina.Sechel@stm.utcluj.ro		
2 2	2.3 Teachers in charge of seminars				Lect. dr.ing. Sechel Argentina-Niculina -		
2.5					Niculina.Sechel@stm.utcluj.ro		
2.4 Y	2.4 Year of study 4 2.5 Semester 8			8	2.6 Assessment	Exam	
2.7 <mark>5</mark>	2.7 Subject Formative category						DS
category Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3. Proj	3 ect	
2.4 Total hours in the surrisulum		of which	3.5	28	3.6		3.6	14	3.	6	
	72	or writeri	Course	20	Seminar		Laboratory		Proj	ect	1
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography						3	0				
(b) Supplementary study in the library, online and in the field							1	0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	3			
(d) Tutoring							2	<u>)</u>			
(e) Exams and tests										(1)	3
(f) Other activities							-				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Knowledge from Materials Technology, Metallic Materials,
	oompetence	Polymeric Materials and Ceramic Materials fields.

5.1	For the course	
5.2	For the applications seminarului / laboratorului / proiectului	Attendance at the laboratory is mandatory according to UTCN regulations

		Knowledge about composite materials types, materials for matrices and materials for reinforcing
_	S	elements.
ona	nce	Knowledge about the methods and technological procedures for elaboration and processing of
essio	ete	composite materials
rofe	omp	Knowledge about the methods for determining the specific characteristics of each class of
<u>а</u>	Ŭ	composite materials
		Knowing the selection criteria of a composite material type for a given application
	es	Promoting the logical reasoning, efficiency and responsibility in the activities carried out
SS	enc	Awareness of the need for continuous training and professional development in order to enter
Cro	pet	the labor market
	com	To promote the teamworking in practical laboratory activities

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	• Development of skills in the field of composite materials in
	,	support of vocational training
		Assimilation of the theoretical bases regarding the main types
		of composite materials and their specific elaboration procedures
	Specific objectives	• Understanding the reinforcement mechanism, knowledge of
7 2		the factors that determine the properties of composite
1.2		materials
		Obtaining the skills to use specific laboratory devices and
		equipment for the elaboration and characterization of
		composite materials

8.1 Locture (cullabus)	Number of	Teaching	Notos
o.i. Lecture (synabus)	hours	methods	Notes
1. General considerations on composite materials - history,			
definitions, constituent materials, classification criteria	2		
2. Materials for matrices. Matrix functions. Types of matrix	2		
materials (metallic, ceramic and polymeric materials)		Power Point	
3. Reinforcement materials. Functions of reinforcements	2	Prezentation	
4. Fiber reinforcement materials (continuous and short	2	Interactive	
fibers) – processing, forms, types, properties		teaching mode	
5. Discontinuous Reinforcements (whiskers	2	university	
and particles) – processing, types, properties		lecture	

6. Compatibility between the matrix and the	2				
reinforcement material					
7. Interface problems of composite materials. Methods for	2				
improving the adhesion between matrix and					
reinforcement materials		Teacher-			
8. Processing of metal matrix composites. Properties and	2	student			
applications of metal matrix composites.		dialogue			
8. Processing of ceramic matrix composites. Properties and	2				
applications of ceramic matrix composites.					
9. Processing of polymer matrix composites.	2				
10. Properties and applications of the polymer matrix	2				
composites					
11. Behavior of composite materials at external loads.	2				
12. Methods of investigation of composite materials.	2				
13. Selection of the composite materials. Case studies	2				
Bibliography					
1. V Jancžu Materiale metalice compozite si tratamen	tele lor termi	ice Ed Dacia 19	00		
2. O. Gângu, Materiale compozite usoare. Ed. Universit	ătii din Craio	va. 2003.	55.		
3. F. Ştefănescu, ş.a., Materialele viitorului se fabrică az	zi - Materiale	compozite, Ed. D).P.,		
București, 1986.					
 T. Dobra, ş.a., Materiale compozite cu matrice metal U.T.Press, 2003 	ica: aliaje du	re sinterizate, Clu	ij-Napoca,		
5. C. Dumitras, C. Opran, Prelucrarea materialelor com	pozite, ceram	nice și minerale, E	d. Tehnică,		
Bucuresti, 1994					
6. P. Moldovan, Compozite cu matrice metalică, Ed. Printech, Bucuresti, 2008.					
7. *** ASM Handbook, Composites, ASM Int., 1992, ASM Int., 1992					
8. G. Neagu, F. Ștefănescu, Metallic Matrix Composites with Particles, Ed. Bren, București, 2002					
9. Ivianoj Gupta, Ival Iviul Ling Sharon, Iviagnesium, magnesium alloys, and magnesium					
	Number	Teaching			
8.2. Seminars /Laboratory/Project	of hours	methods	Notes		
1 Presentation of the laboratory works de manner of the	2				
1. Tresentation of the laboratory works, de mainter of the	2				

	ornours	methous	
1. Presentation of the laboratory works, de manner of the	2		
lab work will be development and the norms of labor			
protection. Analysis of the morphology of composite			
reinforcements.			
2. Determination of the reinforcement's volume fraction in	2		
the composite materials.			
3. Establishing the technological parameters for the	2	Evenesure and	
elaboration of composite materials by liquid phase		exposure and	
infiltration.		applications	
4. Obtaining of the parts from composite materials	2		
through powder metallurgy processes.			
5. Obtaining of the polymer matrix composites by Hand	2		
lay-up technique.			
6. Study of the structure of composite materials by optical	2		
microscopy and scanning electron microscopy.			

7. Tensile properties of fiber reinforced polymer matrix	2			
composites.				
Bibliography				
1. Gy. Thalmaier, N.A. Sechel, I. Vida-Simiti, Metalurgia	Gy. Thalmaier, N.A. Sechel, I. Vida-Simiti, Metalurgia pulberilor - aplicații practice, Ed. UTPress,			
2015				
2. B. V. Neamţu, T. F. Marinca, F. Popa, Tehnici de anal	2. B. V. Neamțu, T. F. Marinca, F. Popa, Tehnici de analiză a materialelor: Aplicații practice, Ed.			
UTPRES, Cluj-Napoca, 2015				
3. G. Hubca, M. Margareta, Materiale compozite, Ed. Tehnică, 1999.				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within a sector of design / processing / characterization of composite materials.

	10.1 Accossment criteria	10.2 Assessment methods	10.3 Weight in the			
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade			
	Assessment of the					
	knowledge taught, by					
10.4 Course	solving tests that consist	Written test - duration of	75 %			
10.4 Course	of topics / questions from	assessment 2 hours	75 /0			
	the theoretical part and					
	problems (E)					
	Students will be evaluated					
	at each laboratory session					
	with taking into account					
	the degree of involvement					
	and how to process and					
10.5 Seminars	interpret the results in	continuous avaluation	25 %			
/Laboratory/Project	practical activities. The	practical activities. The				
	final grade in the					
	laboratory (L) represents					
	the arithmetic mean of					
	the grades from each					
	practical session					
10.6 Minimum standard of performance						
Examination grade (E)	\geq 5; Laboratory grade (L) \geq 5,	(Final grade = 0.75E + 0.25L)				

Date of filling in:		Title Surname Name	Signature
04.05.2023	Lecturer	Lect. dr.ing. Argentina-Niculina Sechel	
	Teachers in charge of	Lect. dr.ing. Argentina-Niculina Sechel	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	1.2 Faculty Faculty of Materials and Environmental Engineering	
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	63

2. Data about the subject

2.1	Subject name	ect name			Materials with special applications			
2.2	Course responsible/lecturer			Asso	Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj.ro			
2.2				Associate professor Florin Popa, florin.popa@stm.utcluj.ro				
22	Teachers in charge of		Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj.ro					
2.5	seminars			Associate professor Florin Popa, florin.popa@stm.utcluj.ro				
2.4 Y	2.4 Year of study 4 2.5 Seme		2.5 Seme	ster	2	2.6 Assessment	examination	
2.7 Subject Formative cate			egory			DS		
category Optionality							DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	У						22
(b) Supplementary study in the library, online and in the field 14				14						
(c) Preparation for seminar	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 14				14					
(d) Tutoring 4					4					
(e) Exams and tests										4
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points	3.10 Number of credit points 4									

4. Pre-requisites (where appropriate)

1 1	Curriculum	General knowledge in Physics and Materials Science and	
4.1	Curriculum	Engineering	
4.2	Competence	Good knowledge in physics and materials science and engineering	

5.1	5.1For the coursePresence at Technical University of Cluj-Napoca at Materia5.1Science and Engineering Department	
E 2	For the applications	Presence at Technical University of Cluj-Napoca at Materials
5.2	(laboratory)	Science and Engineering Department laboratories

		To know the ensemble of the physical, mechanical and technological properties of the materials,				
nal	ces	of their domains of variation on classes of materials and within the classes of materials				
ssio	eter	To understand the interdependence of material-structure-property-use.				
ofe	mpe	To evaluate the engineering materials from the point of view of their properties				
Pr	Ō					
		After completing the discipline students will be able to:				
		-To acquire an adequate scientific language, with specific engineering notions.				
		-Understand the difference between the different types of structures that appear in materials				
		-Understand the operation of complex research and investigation equipment				
JCes		-To be able to correlate the microstructural properties with the physical-mechanical properties				
eter		of a material				
du	-	-Know how to use the material-structure-property correlation to modify the properties of the				
s CO		material.				
Cros		-Know how to analyse material data, to be able to make correlations between the properties of				
0		the material and its use in practice				
		-Know how to intervene creatively in the production of new materials, new processing				
		technologies and in finding solutions to guide the properties of materials in the direction of their				
		rational use				

7. Discipline objectives (as results from the key competences gained)

		Development of competencies in the field of materials with
7.1	General objective	special applications (magnetic materials, superconducting
		materials, smart materials etc).
7.2 Specific chiectives		Understanding the physical, optical and structural properties of
1.2	specific objectives	materials with special applications.

8.1. Locture (cyllobus)	Number of	Teaching	Notos
8.1. Lecture (synabus)	hours	methods	Notes
1. High permeability magnetic materials	3		
2. Materials for magnetic recordings	2	Lecture	
3. Superconducting materials at high	2		
temperatures		PowerPoint	
4. Permanent magnets based on rare earths	3	presentation	
5. Magnetic ceramic materials	2		Multimedia
6. Homogeneous semiconductor materials with	2	Interactive	

junctions. Oxidic and organic semiconductors.		teaching mode	Blackboard
7. Use of ceramic, plastic, liquid and gaseous	2		
insulating materials in electronics and		Dialogue -	
microelectronics		conversation	
8. Materials used in the manufacture of	2	professor -	
accumulators, batteries and fuel cells.		student	
Technology. Applications			
9. Photoelectric cells. Technology. Applications	2		
10. Smart materials. Metallic and polymeric	4	-	
materials with shape memory.			
11. Materials for brushes and electrical contacts	2		
12. Thermoelectric materials	2		
Bibliography	а.	•	

- [1]. Traian Florin Marinca course notes
- [2]. Florin Popa course note
- [3]. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties Fourth Edition, Springer-Verlag Berlin Heidelberg 2010
- [4]. D. Linden, T.B. Reddy, Handbook of Batteries Third Edition, McGraw-Hill, 2002
- [5]. M. Schwartz, Encyclopedia of Smart Materials, John Wiley & Sons, Inc., 2002
- [6]. Michael Coey, Magnetism and Magnetic Materials, 2009, ISBN-13: 978-0521816144, Cambridge University Press

[7]. J. Ping Liu, Eric Fullerton, Oliver Gutfleisch, D.J. Sellmyer, Nanoscale Magnetic Materials and Applications, Springer-Verlag US 2009, ISBN 978-0-387-85598-1

8.2. Laboratory		Number of hours	Teaching methods	Notes
1. Determining the o permanent magnet	ptimal operating point of a	2		
2. The influence of t magnetic permeab	nermomagnetic treatments on ility	2		
3. Obtaining NdFeB	bonded magnets.	2	Evaliantian	Blackboard,
4. Determining the c characteristics of l	apacity and charging ead and nickel batteries.	2	conversation,	computer, specialized
5. Determining the c photoelectric cells	onversion efficiency of	2	Case Study.	software
6. Temperature varia effect	tion of the shape memory	2		
7. Study of electrical	contact wear	2		

Bibliography

[1]. Traian Florin Marinca – course notes

[2]. Florin Popa – course note

- [3]. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties Fourth Edition, Springer-Verlag Berlin Heidelberg 2010
- [4]. D. Linden, T.B. Reddy, Handbook of Batteries Third Edition, McGraw-Hill, 2002
- [5]. M. Schwartz, Encyclopedia of Smart Materials, John Wiley & Sons, Inc., 2002
- [6]. Michael Coey, Magnetism and Magnetic Materials, 2009, ISBN-13: 978-0521816144,

Cambridge University Press

[7]. J. Ping Liu, Eric Fullerton, Oliver Gutfleisch, D.J. Sellmyer, Nanoscale Magnetic Materials and Applications, Springer-Verlag US 2009, ISBN 978-0-387-85598-1

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills will be required for employees who will work as technological engineers. The acquired competencies will be used by those who will carry out their activity within departments whose activity is the innovation, development of new materials with special applications or elaboration, characterization and testing of materials, as well as within the departments that are authorized to certify the quality of a material.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	The exam consists of written test (C). The written test contains grid topics and broader topics that need to be developed. The written exam is carried out as follows: students enter the exam room after being invited to the room by the teacher and occupy the place indicated by the teacher, having on them only writing instruments and paper support on which to write; the number of writing instruments, exam sheets and auxiliaries (ruler, eraser and the like) is announced at the beginning of the exam by the teacher. Failure to comply with the requirements will result in removal from the exam. The exam subjects are either dictated by the teacher or a printed copy is handed to each student. The presence of a mobile phone or other electronic devices on students during the exam is considered copied.	Written test (C) - 2 hours	70%		
10.5 Laboratory	At each laboratory the students receive a mark regarding their implication (I). The students receive notes on the laboratory tests (T) - $T=(T_1+T_n)/n$ (n - number of tests). The final laboratory mark (L) is L=0,5I+0,5T. Each mark should be at least 5.	Oral test (I) - continuous assessment. Tests (T) – 1 hour – theoretical and practical tests	30%		
10.6. Minimur	n standard of performance $$	I 5 I + 0.5 T			
$1 \ge 3, 1 \ge 3, C$	$T \ge 5$, $I \ge 5$, $C \ge 5$, E (the general examination mark) = 0,7 C+0,3L with L=0,5I+0,5T				

Date of filling in: 17.04.2023	Lecturer Teachers in	Title Surname NameAssociate professor Traian Florin MarincaAssociate professor Florin PopaAssociate professor Traian Florin Marinca	Signature	
	application	Associate professor Florin Popa		
Date of approval in th	ne department	Head of department		
26.06.2023		Ass.prof.dr.eng. Mariana Pop		
Date of approval in	the faculty	Dean		
10.07.2023	3	Prof.dr.eng. Cătălin Popa		

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	64

2. Data about the subject

2.1	Subject name				Advanced materials a	and technologies	
2.2	Course responsible/lecturer				Assoc.Prof. Bogdan Viorel Neamtu		
2.2					Assoc.Prof. Gavril Negrea		
2 2	Teachers in charge of seminars				Assoc.Prof. Bogdan Viorel Neamtu		
2.5					Assoc.Prof. Gavril Negrea		
2.4 Y	2.4 Year of study 4 2.5 Semester 2		2.6 Assessment		E		
2.7 Subject Formative category				DS			
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Proje	t 0
3.4 Total hours in the curriculum	100	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Proje	t 0
3.7 Individual study:								•		
(a) Manual, lecture materia	l and	notes, bib	liograph	ıy						16
(b) Supplementary study in the library, online and in the field						20				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14				
(d) Tutoring						4				
(e) Exams and tests										4
(f) Other activities C					0					
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8)100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge of physics, chemistry, material properties, etc.
4.2	Competence	General knowledge of physics, chemistry, material properties, etc.

B		
5.1	For the course	Venue: Room E114, Faculty of Materials Engineering and

		Environmental, Labor Blvd. 103-105 Cluj Napoca,
5.2	For the applications seminarului / laboratorului / proiectului	Venue: Rooms: C 409, E09-1, E05-3, E110, Faculty of Materials and Environmental Engineering, B-dul Muncii 103-105 Cluj Napoca,

	To know technologies for producing advanced materials: sol-gel method, mechanosynthesis,
	SPS, PVD, CVD
	• To know the advanced materials produced by advanced technologies • To understand the
	interdependence of material-structure-property-use.
S	 To evaluate engineering materials from the point of view of their properties
nce	• To develop skills and the ability to operate with measurement data.
ete	Know how to process statistics and interpret measurement data
rofe	Know how to analyze data provided by equipments
₽ 8	• Know how to interpret data obtained from devices that work on different principles, but
	measure the same parameters of the material
	• To know how to use correctly the complex equipment in the laboratory
	• To form skills and the ability to operate with: optical, electronic microscopes, structural
	investigation devices, etc.
	• To acquire an adequate scientific language, with specific engineering notions.
	 ability to distinguish relevant information from irrelevant information
seou	 ability to recognize the essential features of the phenomena studied
eter	 ability to work cooperatively and flexibly in a research / analysis group
du	 ability to develop and implement an analysis plan / project
s co	• ability to promote initiative, dialogue, cooperation, positive attitude, respect for others,
ros	diversity / multiculturalism, continuous improvement of one's professional activities
0	 objective self-assessment of the need for continuous training
	 ability to use multilingual skills effectively and knowledge of information technology.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective		To be informed about special technologies for the production of advanced materials
		To know the methods of rapid and ultra-rapid quenching,
7.2	Specific objectives	mechanical alloying, reactive milling, spark plasma sintering,
		PVD, CVD, sol-gel, vacuum technique.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introduction: variants of chemical methods for obtaining materials.	2		
2. Chemistry of the precursors used in the sol-gel process: oxides, metal salts, alkoxides, carboxylates,	2		

acetylacetonates. Soil formation and stability. The						
hydrolysis-condensation						
3. Gelling (sol-gel transition): phenomenology; classical						
theory and percolation theory; kinetic models. Aging and	2	Lecture	Multimedia			
drying gels.						
4. Phenomenology and structural evolution 5.	2	PowerPoint	Blackboard			
5. Sintering mechanisms	2	presentation				
6. Applications of the sol-gel process. Movies and covers.	2					
Monolithic block. Powders. Fiber. Composites	2	Interactive				
7. Intelligent materials	2	teaching mode				
8. Methods of mechanosynthesis. Mechanical alloying	2]				
9. Mechanical grinding, Reactive grinding. Applications	2	leacher-				
10. Effects of rapid cooling. Methods for obtaining	2	dialogue				
amorphous alloys by rapid cooling	2					
11. Spark Plasma sintering. Principles. Applications	2					
12. Vacuum technique	2					
13. Obtaining materials through PVD technique.	2					
Properties. Applications						
14. Obtaining materials by CVD technique. Properties.	2					
Applications						
Bibliography						
1. Cavaliere Pasquale, Spark Plasma Sintering of Mater	ials, 2019, S	pringer Internatio	nal			
Publishing, 2019.						
2. M.A.Otooni-Elements of Rapid Solidification Springer-Verlag Berlin, 1998 9.						
3. J.F.Shackelford- Introduction to Materials Science fo	r Engineers,	Macmillan P.C., 1	998			
4. Cury Suryanarayana, Mechanical alloying and milling	, 1995, CRC	Press.				
 David Levy, Marcos Zayat, The Sol-Gel Handbook, 20 ISBN:9783527334865 	15, Wiley-V	CH Verlag GmbH &	& Co. KGaA,			
6. Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2010. Elsevier.						

 Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2010, Elsevi ISBN 978-0-8155-2037-5.

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
1. Preparation by chemical methods of ZnO thin films	2		
2. Nanoscale zinc oxide synthesis	2	Practical	
3. Thermal, structural and morphological characterization	2	measurement	
of the obtained ZnO films and powders		s, data	Blackboard,
4. Obtaining the Ni3Fe compound by mechanical alloying	2	recording, spectrum	computer, Specialized
and its characterization			
5. Establishing the thermodynamic conditions for obtaining	2	interpretation	software
amorphous alloys. Case Study.		,	and
6. Obtaining by SPS a nanocrystalline compact from	2	mathematical	equipment
mechanically alloyed powders		calculation.	
	2		
7. Obtinerea unuor straturi subțiri prin PVD			

Bibliography

- 1. Cavaliere Pasquale, Spark Plasma Sintering of Materials, 2019, Springer International Publishing, 2019.
- 2. M.A.Otooni-Elements of Rapid Solidification Springer-Verlag Berlin, 1998 9.
- 3. J.F.Shackelford- Introduction to Materials Science for Engineers, Macmillan P.C., 1998
- 4. Cury Suryanarayana, Mechanical alloying and milling, 1995, CRC Press.
- 5. David Levy, Marcos Zayat, The Sol-Gel Handbook, 2015, Wiley-VCH Verlag GmbH & Co. KGaA, ISBN:9783527334865
- 6. Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2010, Elsevier, ISBN 978-0-8155-2037-5.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within a sector of manufacturing and / or processing of various types of materials. The acquired knowledge is useful for those who are also engaged in the field of quality assurance of materials.

	10.1 Accossment criteria	10.2 Assessment methods	10.3 Weight in the	
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade	
	Assessment of the			
	knowledge taught - at the			
	end of the semester			
10.4 Course	(grade V), by solving some	Written test / Oral test	80%	
	tests that consist of a			
	theoretical part and			
	problems			
	Students will be evaluated			
	at each laboratory session			
	taking into account the			
	degree of involvement			
	and how to process and			
10.5 Seminars	interpret the results in	Writton tost / Oral tost	20%	
/Laboratory/Project	practical activities. The	Written test / Oral test	20%	
	final grade in the			
	laboratory (L) represents			
	the arithmetic mean of			
	the grades from each			
	practical session			
10.6 Minimum standa	ard of performance			
• Colloquium note ≥ 5	; Laboratory grade ≥ 5, (Collo	quium grade = 0.8 V + 0.2L)		

Date of filling in:		Title Surname Name	Signature	
16.05.2023	l acturar	Assoc.Prof. Bogdan Viorel Neamtu		
	Lecturer	Assoc.Prof. Gavril Negrea		
	Teachers in	Assoc.Prof. Bogdan Viorel Neamtu		
	application	Assoc.Prof. Gavril Negrea		
Date of approval in th	ne department	Head of department		
26.06.2023		Ass.prof.dr.eng. Mariana Pop		
Date of approval in the faculty 10.07.2023		Dean Prof.dr.eng. Cătălin Poj	ра	

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	65.00

2. Data about the subject

2.1	Subject name				Numerical control systems in materials processing		
2.2	Course responsible/lecturer				Assoc. Prof. Dan Frunza		
2.3	Teachers in charge of seminars				Lecturer Dan Noveanu		
2.4 ۱	2.4 Year of study 4 2.5 Semester 8			8	2.6 Assessment		Exam
2.7 <mark>5</mark>	2.7 Subject Formative category				DS		
cate	category Optionality				DI		

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	2	3. Proj	3 ect	
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	28	3. Proj	6 ect	
3.7 Individual study:			•								
(a) Manual, lecture material and notes, bibliography 14						4					
(b) Supplementary study in the library, online and in the field						7	'				
(c) Preparation for seminar	s/labo	ratory wo	rks, hon	newo	ork, repor	ts, pc	ortfolios, essa	ys		14	4
(d) Tutoring										7	,
(e) Exams and tests										2	
(f) Other activities											
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 44											
3.9 Total hours per semester (3.4+3.8)					100						
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5.1	For the course	
5.2	For the applications	
5.2	Seminars /Laboratory/	

	Ino	iact	
P	10	jeci	

Professional	competences	To be able to analyse the functionality of a manufacturing system and to identify the elements of specific order Know the components / equipment of digital control specific to the processing of materials To be able to conceive and design a combinational circuit, respectively a sequential circuit of digital control
Cross	competences	Carrying out activities and exercising the specific roles of teamwork, on different hierarchical levels, promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others, diversity and multiculturalism and continuous improvement of one's activity. The objective self-assessment of the need for professional training continues, in order to be inserted on the labour market and to adapt to the dynamics of its requirements and for personal and professional development. Effective use of multilingual skills and knowledge of information and communication technology.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Development of skills in the field of digital order processing of materials in the context of permanent improvement of control equipment.
7.2	Specific objectives	Identification of different control systems and functional blocks composing them, based on the functional requirements of some equipment of materials processing. Developing skills to understand how it works / definition / conception of an integrated manufacturing system, through the prism of the flow informational, respectively of the control system that coordinates it.

8.1. Locture (sullabus)	Number of	Teaching	Notos	
8.1. Lecture (synabus)	hours	methods	NOLES	
Course 1. Fundamentals of ordering manufacturing	2			
systems.				
Course 2. Symbols. Component element.	2			
Course 3. Basic concepts about processing systems.	2			
Course 4. Digital control	2			
Course 5. Combinational logic circuits.	2			
Course 6. Sequential logic circuits		Exposure,	Video-	
Course 7. Sensors and transducers used in a manufacturing	2	discussions	projector	
system.				
Course 8. Microprocessor in control of manufacturing	2			
systems; microprocessor systems				
Course 9. Microcontrollers; structure / block diagram of a	2			
microcontroller system; examples of control devices with				
microcontrollers.				

Course 10. Programmable automata integrated in a	2	
manufacturing system		
Course 11. Principles of designing the digital control	2	
scheme		
Course 12. Digital control diagrams specific to the various	2	
components of a manufacturing system		
Course 13. Examples of digital control for various cutting	2	
applications		
Course 14. Machines, equipment, industrial robots and	2	
Artificial Intelligence		

Bibliography

- 1. Baiesu., A.-S. Tehnica reglarii automate, Editura MatrixRom, Bucuresti, 2012, ISBN
- 2. Chircor, M., ş.a. Elemente de cinematica, dinamica şi planificarea traiectoriilor roboților industriali, Editura Academiei Române, Bucureşti, 2001, ISBN .
- 5. Damian, M., Cărean, Al. Fabricație asistată de calculator, Editura Casa Cărții de Știință, Cluj-Napoca, 2003, ISBN .
- 6. Davidoviciu, A., ş.a. Modelarea, simularea și comanda manipulatoarelor și roboților industriali, Editura Tehnică, București, 1986, ISBN .
- 7. Moise., Automate programabile. Proiectare. Aplicatii, Editura MatrixRom, Bucuresti, 2004, ISBN
- 8. Moise., Automate programabile de tip industrial, Editura MatrixRom, Bucuresti, 2010, ISBN
- 9. Trandafir, M., ş.a. Automatizarea proceselor de productie, Elemente tehnologice si constructive, Oficiu de informare documentara pentru industria constructiilor de masini, Bucuresti, 1992

Number	Teaching	Notos
of hours	methods	Notes
2		
4		
2		Video
2	Exposure,	projector,
2	Applications	Computers,
		Equipment
4		
12		
	Number of hours 2 4 2 2 2 2 4 12	Number of hoursTeaching methods24422Exposure,24412

Bibliography

- 1. Bostan, E., ş.a. Sisteme de reglare automata, Culegere de probleme, Editura MatrixRom, Bucuresti, 2011, ISBN
- 2. Bostan, E., ş.a. Servomecanisme, Indrumar de laborator, Editura MatrixRom, Bucuresti, 2009, ISBN
- 3. Csipkes, G., ş.a. Circuite integrate digitale, Culegere de probleme, Editura U.T.Pres, 2011, ISBN
- 4. Ciumbulea, G. -Sisteme digitale, Teorie si aplicatii industriale, Editura Electra, Bucuresti, 2005,

ISBN

- 5. Domsa, A., ş.a. Elemente de reglare automata, Editura U.T.Pres, 2005, ISBN
- 6. Navrapesu, C., ş.a. Utilizarea microcontrolerelor industriale, Editura ICPE, Bucuresti, 2000, ISBN
- 7. Petre, V.-C. Introducere in microcontrolere si automate programabile, Editura MatrixRom, Bucuresti, 2010, ISBN
- 8. Spranceana, N. ş.a. Automatizari discrete in industrie, Culegere de probleme, Editura Tehnica,
 - Bucuresti, 1978
- 9. Szasz Csaba Sisteme numerice de comanda si control, Editura U.T.Pres, 2006,

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The skills acquired are necessary for any engineer in the specialty of Materials Processing Engineering / Materials Science, who operates a manufacturing system.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Answers to 8 theory questions and solving 2 problems	Written exam, 2 hours	60%			
10.5 Seminars /Laboratory/Project	Completion of the 14 laboratory works Solving homework	Observation and analysis of practical activities carried out by students Homework check	40%			
10.6 Minimum standard of performance						
Promoting the laboratory activity with grade 5 and solving the homework; Correct answer to 4 questions and 1 problem solved at the written exam.						

Date of filling in:		Title Surname Name	Signature
4.05.2023	Assoc.Prof.	Dan Frunza	
	Lecturer Dan Noveanu	Dan Noveanu	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	66,10

2. Data about the subject

2.1	Subject name				Modelling and simulation in materials science			
2.2	Course responsible/lecturer				Lecturer Ph.D Eng. DAN NOVEANU			
2.3	Teachers in charge of seminars				Lecturer Ph.D Eng. DAN NOVEANU			
2.4 ۱	2.4 Year of study 4 2.5 Semester 2			2	2.6 Assessment	V		
2.7 <mark>5</mark>	2.7 Subject Formative category						DS	
cate	ategory Optionality						DO	

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	-	3.3 Laboratory	1	3. Proj	3 ect	-
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	-	3.6 Laboratory	14	3. Proj	6 ect	-
3.7 Individual study:											
(a) Manual, lecture materia	and	notes, bib	liograph	У						1	0
(b) Supplementary study in the library, online and in the field							1	5			
(c) Preparation for seminar	s/labo	ratory wo	orks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		1	0
(d) Tutoring							1	0			
(e) Exams and tests							2	2			
(f) Other activities							C)			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 47											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Applied Informatics II
4.2	Competence	3D Modelling of parts and assemblies

5.1	For the course	On-line
5.2	For the applications seminarului / laboratorului / proiectului	On-line

		After completing the discipline students will be able to:
nal	ces	• To know aspects of the most advanced techniques and methods of geometric modeling of the
ssio	eter	solid and simulation of the mechanical interaction between objects.
ofe	mp(• Know how to use the "Simulation" module integrated into the SolidWorks program.
P	CO	• Use the computer to model and simulate material resistance problems, thermal transfer, etc.
Cross	competences	Acquiring knowledge specific to the field of engineering for the purpose of vocational training and entry into the labor market.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Development of competences in the field of modelling and simulation.
7.2	Specific objectives	Assimilation of theoretical knowledge on the use of Simulation module in SolidWorks. Ability to make complex mechanical simulations.

8.1. Lecture (syllabus)	Number of	Teaching	Notes	
8.1. Lecture (synabus)	hours	methods	Notes	
Introduction. (General principles of modeling and	2			
simulation, finite element method)				
Presentation of the "Simulation" module integrated into	2			
the SolidWorks program.				
Static analysis with "Simulation"	2	studios	On-line,	
Simulation of thermal transfer processes (stationary and	2	discussions	TEAMS	
transient)		uiscussions		
Modal analysis and buckling with "Simulation"	2	-		
Optimization studies using the "Simulation" module	2			
Impact studies using the "Simulation" module	2	-		
Bibliography				
1. CosmosWorks User's Guide				
2. Kurowski_Engineering_Analysis_with_CosmosWorks				
3. Solidworks User's Guide				
8.2. Sominars /Laboratony/Project	Number	Teaching	Notos	
o.z. Seminars / Laboratory/Project	of hours	methods	Notes	
Analysis of the state of strain and deformation in a plate	2			
and a support.		Example	On-line,	
Analysis of the state of tension and deformation in a	2	practice	TEAMS	
rotating flywheel				

Modal analysis of a platform and performing a buckling	2				
	-				
analysis in the elastic domain.					
Analysis of thermal transfer through the wall of a metal	2				
casting form (stationary regime)					
Transient heat transfer problem	2				
Optimize the shape of a part	2				
Example of impact analysis	2				
Bibliography					
1. Mikell P. Groover, Emory W. Zimmers, CAD/CAM: Computer-Aided Design and Manufacturing,					
Prentice-Hall International, Inc.1984.					
2. Andrew Tizzard, An Introduction to Computer Aided Engir	eering, McG	raw-Hill Book Cor	mpany, 1994.		

3. CosmosWorks User's Guide

4. Kurowski_Engineering_Analysis_with_CosmosWorks

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competencies will be required for employees working in design, manufacturing, manufacturing services.

	10.1 Accessory out outout	10.2 Assessment matheda	10.3 Weight in the			
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade			
	20 Theory questions.	On-line	20%			
10.4 Course		Grid Questionnaire – Duration				
		of Evaluation 1/2 hours				
10 E Sominars	Solving an application	On-line	80%			
	with the help of a	Practical sample – duration 2				
/Laboratory/Project	computer	hours				
10.6 Minimum standard of performance						
Make at least 50% of the assessments.						

Date of filling in:		Title Surname Name	Signature
18.04.2023	Lecturer	Lecturer Ph.D Eng. DAN NOVEANU	
	Teachers in charge of	Lecturer Ph.D Eng. DAN NOVEANU	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	66.20

2. Data about the subject

2.1	Subject name Semicon				ico	nductor Materials		
2.2	Course respor	/lecturer	Asso	Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj.ro				
22	Teachers in charge of		٨٠٢٥	Accepted and factor Trains Florin Marines, marines tusing Ostro utalui re			mutchui ro	
2.5	seminars		A330	Cia		ionin Mannea, mannea.traian@si	.m.utciuj.io	
2.4 Y	2.4 Year of study 4 2.5 Seme			ster	2	2.6 Assessment	colloquium exam	
2.7 Subject Formative cat		egory				DS		
category Optionality							DO	

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum		of which	3.5 Course	14	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:		•			•					
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.6
(b) Supplementary study in the library, online and in the field						1	.0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.0			
(d) Tutoring							3			
(e) Exams and tests										3
(f) Other activities							5			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 47										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

л 1	Curriculum	General knowledge in Physics, Chemistry and Materials Science and		
4.1		Engineering		
4.2	Competence	Good knowledge in physics and materials science and engineering		

The second se		
5.1	For the course	Presence at Technical University of Cluj-Napoca at Materials

		Science and Engineering Department	
5.2	For the applications	Presence at Technical University of Cluj-Napoca at Materials	
	(laboratory)	Science and Engineering Department laboratories	

		The student, after attending the course and performing laboratory work will be able to:
		- To know the general characteristics of semiconductors;
		- To understand the role of semiconductors in applications and the general applications of
la	ces	semiconductors;
sior	tenc	- To understand the Engineering of the electronic band structure and crystal structure of
ofes	upe.	semiconductor
Pro	con	materials.
		- To Interpret the bandgap.
		- Be familiar with the optical and structural characterization techniques
		- Be familiar with the processing techniques.
	es	- To acquire a specific engineering scientific language.
SS	enc	- To improve their skills and abilities to operate with laboratory equipment.
Cro	pet	- To know how to evaluate the data in relation to given references.
	com	
	5	

7. Discipline objectives (as results from the key competences gained)

7.1	Conoral objective	Development of competencies in the field of semiconductor
	General objective	materials (critical to microelectronic devices)
7.2	Spacific objectives	Understanding the physical, optical and structural properties of
	specific objectives	semiconductor materials.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Electrical conductivity. General notions about	2		
semiconductors.		Lecture	
2. Elementary semiconductors. Extrinsic and intrinsic	2		
semiconductors		PowerPoint	
3. Amorphous semiconductors. Oxidic	2	presentation	
semiconductors. Nanostructured semiconductors			
4. Organic semiconductors. Applications of organic	2	Interactive	
semiconductors (OLED etc).		teaching mode	Multimedia
5. Junctions p-n. Diode. Diode applications (LED,	2		Mattineala
photovoltaic cells, etc.)		Dialogue -	Blackboard
6. npn and pnp junctions. Transistor and transistor	2	conversation	Diachoodia
applications.		professor -	
7. Semiconductor technology. Methods for obtaining	2	student	

semiconductors						
Bibliography						
 Traian Florin Marinca – course notes P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties Fourth Edition, Springer-Verlag Berlin Heidelberg 2010. Hwaiyu Geng, Semiconductor Manufacturing Handbook (McGraw-Hill Handbooks S) 1st Edition, McGraw-Hill Education; 1st edition, 2005, ISBN-13 : 978-0071445597 Yacobi, B.G., Semiconductor Materials, An Introduction to Basic Principles, Springer Science+Business Media New York, 2003, ISBN 978-0-306-47361-6 Lev I. Berger, Semiconductor Materials, 1996, CRC Press, ISBN 9780849389122 						
8.2 Laboratory	Number	Teaching	Notes			
	of hours	methods	Notes			
1. Determination of the forbidden / activation energy	/					
zone for semiconductor materials. Bandgap.						
2. Determining the lifespan of overloaded carriers	2		Blackboard, computer, specialized			
 Determining the density of dislocations in semiconductor materials 	2	- Explication,				
 Electrical resistivity of semiconductors, its variation with temperature 	2	conversation, Case Study.				
5. Analysis of a LED lighting bulb, dimmable lighting bulb. Control of tension and voltage waveform	2		soltware			
6. Diodes and transistors analysis	2	_				
7. Photovoltaic cells analysis	2					
Bibliography	4					
 P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties Fourth Edition, Springer-Verlag Berlin Heidelberg 2010. Hwaiyu Geng, Semiconductor Manufacturing Handbook (McGraw-Hill Handbooks S) 1st Edition, McGraw-Hill Education; 1st edition, 2005, ISBN-13 : 978-0071445597 Yacobi, B.G., Semiconductor Materials, An Introduction to Basic Principles, Springer Science+Business Media New York, 2003, ISBN 978-0-306-47361-6 						

[4]. Lev I. Berger, Semiconductor Materials, 1996, CRC Press, ISBN 9780849389122

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills will be required for employees who will work as technological engineers and microelectronics. The acquired competencies will be used by those who will carry out their activity within departments whose activity is the elaboration, characterization, testing of materials, as well as within the departments that are authorized to certify the quality of a material.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The exam consists of written test (C). The written test contains grid topics and broader topics that need to be developed. The written exam is carried out as follows: students enter the exam room after being	Written test (C) - 2 hours	70%

	invited to the room by the teacher and occupy the place indicated by the teacher, having on them only writing instruments and paper support on which to write; the number of writing instruments, exam sheets and auxiliaries (ruler, eraser and the like) is announced at the beginning of the exam by the teacher. Failure to comply with the requirements will result in removal from the exam. The exam subjects are either dictated by the teacher or a printed copy is handed to each student. The presence of a mobile phone or other electronic devices on students during the exam is considered copied.						
10.5 Laboratory	At each laboratory the students receive a mark regarding their implication (I). The students receive notes on the laboratory tests (T) - $T=(T_1+T_n)/n$ (n - number of tests). The final laboratory mark (L) is L=0,5I+0,5T. Each mark should be at least 5.	Oral test (I) - continuous assessment. Tests (T) – 1 hour – theoretical and practical tests	30%				
10.6. Minimur	10.6. Minimum standard of performance						
$T \ge 5$, $I \ge 5$, $C \ge 5$, E (the general examination mark) = 0,7 C+0,3L with L=0,5I+0,5T							

Date of filling in:		Title Surname Name	Signature
14.05.2023	Lecturer	Assoc.prof. Traian Florin MARINCA	
	Teachers in charge of application	Assoc.prof. Traian Florin MARINCA	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	67.1

2. Data about the subject

2.1	Subject name Building Materials							
					Associate Professor Ph.D. Eng. Claudiu ACIU			
2 2		مانهام	/le etunen		Claudiu.Aciu@ccm.	utcluj.ro		
2.2	Course responsible/lecturer				Lecturer Ph.D. Eng.	Elena JUMATE		
					Elena.Jumate@ccm.utcluj.ro			
	Teachers in charge of seminars				Associate Professor Ph.D. Eng. Claudiu ACIU			
2 2					Claudiu.Aciu@ccm.utcluj.ro			
2.3					Lecturer Ph.D. Eng. Elena JUMATE			
					Elena.Jumate@ccm.utcluj.ro			
2.4 ۱	ear of study	4	2.5 Semester	2	2.6 Assessment	С	DS/DO	
2.7 <mark>9</mark>	2.7 Subject Formative category							
category Optionality								

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar		3.3 Laboratory	1	3.3 Proje	ct	
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar		3.6 Laboratory	14 3.6 Proje		ct	
3.7 Individual study:						1		I			
(a) Manual, lecture material and notes, bibliography						2	5				
(b) Supplementary study in the library, online and in the field							5	;			
(c) Preparation for seminar	s/labo	ratory wo	orks, hon	newc	ork, report	ts, po	ortfolios, essa	ys		1	0
(d) Tutoring										5	;
(e) Exams and tests										2	2
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 47											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

3.10 Number of credit points

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Physics; Chemistry

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

		After completing the discipline, students must have theoretical knowledge about:
		- Mineral binders (hydraulic and non-hydraulic binders); Mortars with inorganic binders;
		Concretes with inorganic binders; Ceramic materials; Glass materials; Bitumen and
		bituminous binders; Insulation materials; Thermal insulation, sound and hydrofuge
_	S	insulation; Polymer materials.
ona	nce	After completing the discipline, students will be able to:
essic	ete	 determine the properties of binders (plaster, lime, cement);
rofe	dmo	- determine the mortar composition. Determination of properties of mortar with mineral
<u>م</u>	S	binders;
		- determine of concrete composition. determination of properties of fresh concrete;
		 determine the properties of ceramic products (wall and roofing materials);
		- determine the properties of bitumen and bitumen impregnated materials;
		- determine the mechanical strengths of plaster, cement, mortar, concrete and masonries.
		1. Application of effective and responsible work strategies, punctuality, responsibility and
	ces	personal liability based on principles, norms and values of professional ethics.
SSC	ten	2. Applying the techniques of effective team work on different hierarchical levels.
Š	npe	3. Documentation in Romanian and in a foreign language, for professional and personal
	con	development through continuous training and effective adaptation to new technical
		specifications.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing expertise in control and quality assurance in support of training.						
		Assimilating	theoretical	knowledge	concerning	the		
7.2	Specific objectives	characteristics	of the main	building materia	als and methods	for		
		their determination	tion.					

8.1. Locture (cullabus)	Number of	Teaching	Notos
o.i. Lecture (synabus)	hours	methods	Notes
1. Aggregates for mortars and concretes.	2		
2. Mineral binders: non-hydraulic binders. Mineral	2	Power Point	Video –
binders: hydraulic binders. Polymer materials.	Z	presentation	projector
3. Mortars with inorganic binders.	2		

4. Concretes with inorganic binders. Polymer concretes.	2	
5. Ceramic materials. Glass materials.	2	
6. Bituminous binders. Bitumen. Insulation materials,	2	
thermal insulation, sound and hydrofuge insulation.	2	
7. Composite and associated materials.	2]

Bibliography

1. Daniela Lucia MANEA, Claudiu ACIU, Alexandru Gheorghe NETEA (2011). Materiale de construcții. Ed. UTPRESS, Cluj-Napoca.

2. Manea Lucia Daniela, Netea Gheorghe Alexandru, Claudiu Aciu (2014). Materiale de construcție si chimie aplicată. Teste grilă. Ed. UTPRESS, Cluj – Napoca.

3. Daniela Lucia MANEA, Claudiu ACIU (2015). Materiale de Construcții și Chimie Aplicată. Building Materials and Applied Chemistry. Ed. UTPRESS, Cluj-Napoca.

4. Manea Daniela Lucia (2012). Patologia și reabilitarea structurilor; Materiale speciale pentru construcții. Ed. UTPRESS, Cluj-Napoca.

5. Neville A. M. (2003). Proprietățile betonului, ediția a IV –a. Editura Tehnică, București.

6. Manea Daniela (2003). Materiale compozite. Ed. UTPRESS, Cluj-Napoca.

7. Stoian Valeriu și colectiv (2004). Materiale compozite pentru construcții. Ed. Politehnica, Timișoara.

Number	Teaching	Notes
of hours	methods	NOLES
2		
2		
2		
2	Laboratory	
2	work	
2	nresentation	Laboratory
2	and	works
2	applications	
	apprications	
2		
2		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Value Teaching 2 methods 2 Laboratory 2 work 2 and 2 and 2 2 2 2

Bibliography

1. Daniela Lucia MANEA, Alexandru Gheorghe NETEA, Claudiu ACIU (2012). Materiale pentru construcții. Ed. UTPRESS, Cluj-Napoca.

2. Netea Gheorghe Alexandru, Manea Lucia Daniela, Claudiu Aciu(2010). Materiale de construcție și chimie aplicată, Vol III.Ed. UTPRESS, Cluj-Napoca.

3. Manea Lucia Daniela, Netea Gheorghe Alexandru, Claudiu Aciu (2014). Materiale de construcție și chimie aplicată. Teste grilă. Ed. UTPRESS, Cluj – Napoca.

4. Netea Alex., Manea Daniela, Aciu Claudiu, Jumate Elena, Babota Florin, Pleșa Luminița, Iernuțan Răzvan. *Materiale de construcție. Chimie.* Ed. UTPRESS, Cluj – Napoca, 2019.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be necessary to the employees who work in the quality control of building materials, civil engineers as well as to the teachers in secondary education.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			final grade		
10.4 Course	Multiple choice test Written test		60 %		
10.5 Laboratory	Problems Written test		40 %		
10.6 Minimum standard of performance					
Mark components: Problems (mark P); Multiple choice test (mark G).					
Mark computation formula: $N = 0.4P + 0.6G$; is calculated only if: $P \ge 5$ and $G \ge 5$.					

Date of filling in:		Title Surname Name	Signature
07.05.2023		Associate Professor Ph.D. Eng. Claudiu ACIU	
	Lecturer	Lecturer Ph.D. Eng. Elena JUMATE	
	Teachers in charge of application	Associate Professor Ph.D. Eng. Claudiu ACIU	
		Lecturer Ph.D. Eng. Elena JUMATE	

Date of approval in the department 26.06.2023

Date of approval in the faculty 10.07.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Dean Prof.dr.eng. Cătălin Popa
SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	67.20

2. Data about the subject

2.1	Subject name				Nanomaterials and r	nanotechnologies	
2.2	Course responsible/lecturer				Assoc.Prof. Bogdan Viorel Neamtu		
2.3	Teachers in ch	eachers in charge of seminars			Assoc.Prof. Bogdan	Viorel Neamtu	
2.4 Year of study 4 2.5 Semester 2		2.6 Assessment		С			
2.7 Subject Formative category					DS		
cate	category Optionality						DO

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:			•					•		
(a) Manual, lecture materia	l and	notes, bib	liograph	У						10
(b) Supplementary study in the library, online and in the field						17				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						12				
(d) Tutoring							4			
(e) Exams and tests										4
(f) Other activities C							0			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 47										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge of physics, chemistry, material properties, etc.
4.2	Competence	General knowledge of physics, chemistry, material properties, etc.

5. Requirements (where appropriate)

.1 For the course

5.2	For the applications
	seminarului / laboratorului /
	proiectului

6. Specific competences

		To acquire an adequate scientific language, with specific engineering notions.				
		Understand the difference between the different types of structures that appear in materials				
_	S	To know how to evaluate the composition and microstructure of a material through qualitative				
ona	nce	and quantitative instrumental analyzes				
essio	ete	To know the preparation and manufacture of nanostructures				
rofe	amp	To know and understand the organization and behavior of matter at the nanometer level				
<u> </u>	č	To understand the operation of complex research and investigation equipment				
		Be able to correlate the properties of microstructure with the physical-mechanical properties				
		a material				
		-To develop skills and the ability to operate with measurement data.				
nces		-To develop skills and the ability to operate with measurement data. -Know how to appreciate the nature and type of errors in specific laboratory measurements.				
petences		 To develop skills and the ability to operate with measurement data. -Know how to appreciate the nature and type of errors in specific laboratory measurements. -Know how to process statistics and interpret measurement data 				
competences		 To develop skills and the ability to operate with measurement data. -Know how to appreciate the nature and type of errors in specific laboratory measurements. -Know how to process statistics and interpret measurement data -Know elements of preparation and manufacture of nanostructures 				
ross competences		 To develop skills and the ability to operate with measurement data. -Know how to appreciate the nature and type of errors in specific laboratory measurements. -Know how to process statistics and interpret measurement data -Know elements of preparation and manufacture of nanostructures -To know the applications of nanotechnology in technology, pharmacy, biology, medicine, etc 				
Cross competences		 To develop skills and the ability to operate with measurement data. -Know how to appreciate the nature and type of errors in specific laboratory measurements. -Know how to process statistics and interpret measurement data -Know elements of preparation and manufacture of nanostructures -To know the applications of nanotechnology in technology, pharmacy, biology, medicine, etc To know the application fields of amorphous and nanocrystalline materials 				

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	To know how to use complex laboratory equipment correctly To develop skills and the ability to operate with: optical, electronic microscopes, structural investigation devices, etc.
7.2	Specific objectives	Interpretation of X-ray diffraction, optical, electron microscopy and AFM images. To be able to analyze EDX spectra thermal analysis curves (DSC, DTA, TG), IR spectra.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Notions of material structure. Properties of nanomaterials	2		
 The organization and behavior of matter at the nanometer level. Phenomena of self-organization (self-assembly) and self-replication of atoms and molecules. Manipulation of atoms and molecules. 	2		

3.	Synthesis and properties of nanoparticles,	-				
	nanoclusters, nanotubes, nanowires, etc.	2	Lecture	Multimedia		
4.	Thin films Physical deposition methods					
	(Evaporation based methods; Ablation; DC and RF	2	PowerPoint	Blackboard		
	spraying)		presentation			
5.	Thin films Chemical deposition methods	2	-			
6.	Film formation and structure (nucleation		Interactive			
	thermodynamics; nucleation rate; nucleation rate.		teaching mode			
	Nucleation dependence of substrate temperature;	2				
	atomistic theory of nucleation; film coalescence,		Teacher-			
	coalescence mechanisms)		student			
7.	Epitaxial growth (Structural aspects of epitaxy;		dialogue			
	Reticular mismatch; NCSL theory; Epitaxial film	2				
	deposition methods)					
8.	Characterization of thin films (electrical, magnetic					
	and optical properties; Determination of film					
	thickness and roughness; Morphological	2				
	characterization; Structural characterization;	2				
	Characterization of multilayer structures; Chemical					
	characterization.)					
9.	Thermodynamics of the formation of amorphous		-			
	and nanocrystalline structures. Kinetics of the	2				
	formation of amorphous and nanocrystalline	Z				
	structures					
10.	. Massive amorphous metallic materials.	n				
	Preparation and characterization.	2				
11.	. Methods for obtaining metastable materials by					
	rapid cooling. Techniques for consolidating rapidly	2				
	cooled materials into massive products					
12.	. Thermal stability and structural transformations	2				
	when heating materials obtained by rapid cooling	Z				
13.	. Mechanical, thermal, magnetic and electrical					
	properties of amorphous and nanocrystalline	2				
	materials					
14.	Applications of nanotechnology in technology,					
	pharmacy, biology, medicine, etc. Fields of	2				
	application of amorphous and nanocrystalline	2				
	materials					
Bibliog	raphy					
1.	Sharma Surender, Handbook of Materials Characteri	zation, 2018,	, ISBN 978-3-319-	92955-2,		
	Springer International Publishing					
2.	Cavaliere Pasquale, Spark Plasma Sintering of Mater	ials, 2019, Sp	ringer Internatio	nal		
	Publishing, 2019.					

- 3. M.A.Otooni-Elements of Rapid Solidification Springer-Verlag Berlin, 1998 9.
- 4. J.F.Shackelford- Introduction to Materials Science for Engineers, Macmillan P.C., 1998
- 5. David Levy, Marcos Zayat, The Sol-Gel Handbook, 2015, Wiley-VCH Verlag GmbH & Co. KGaA, ISBN:9783527334865
- 6. Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2010, Elsevier, ISBN 978-0-8155-2037-5.

8.2 Seminars /Laboratory/Project	Number	Teaching	Notes			
	of hours	methods				
1. Evaporation deposition in the electron beam of a	2					
metal film (film deposition, determination of the						
film thickness by X-ray diffraction at small angles)						
2. Growth of an oxide film by CVD- (deposition and	2	-				
pyrolysis of the precursor film and heat treatment						
of crystallization, determination of the degree of		Practical				
crystallinity by X-ray diffraction)		measurement	Blackboard,			
3. Obtaining massive amorphous metallic materials in	2	s, data	computer,			
the laboratory		recording,	Specialized			
4. Heating behavior of metal bottles. (Determination	2	interpretation	software			
of recrystallization temperature by thermal		interpretation	and			
analysis)		, mathematical	equipment			
5. Determination of the magnetic properties of metal	2	calculation				
bottles in the Co-Ni-P system		culculation.				
6. Mechanical properties of amorphous materials.	2	-				
Tensile test of amorphous bands						
7. Applications of atomic force microscopy to the	2					
study of nanomaterials.						
Bibliography						

- 1. Sharma Surender, Handbook of Materials Characterization, 2018, ISBN 978-3-319-92955-2, Springer International Publishing
- 2. Cavaliere Pasquale, Spark Plasma Sintering of Materials, 2019, Springer International Publishing, 2019.
- 3. M.A.Otooni-Elements of Rapid Solidification Springer-Verlag Berlin, 1998 9.
- 4. J.F.Shackelford- Introduction to Materials Science for Engineers, Macmillan P.C., 1998
- 5. David Levy, Marcos Zayat, The Sol-Gel Handbook, 2015, Wiley-VCH Verlag GmbH & Co. KGaA, ISBN:9783527334865
- 6. Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2010, Elsevier, ISBN 978-0-8155-2037-5.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within a sector of manufacturing and / or processing of various types of materials. The acquired knowledge is useful for those who are also engaged in the field of quality assurance of materials.

10. Evaluation

	10.1 Accossmont critoria	10.2 According to the de	10.3 Weight in the
Activity type	10.1 Assessment criteria	10.2 Assessment methous	final grade
	Assessment of the knowledge		
	taught - at the end of the		
10.4 Course	semester (grade V), by solving	Written test / Oral test	80%
	some tests that consist of a		
	theoretical part and problems		
	Students will be evaluated at		
	each laboratory session taking		
	into account the degree of		
	involvement and how to		
10.5 Seminars	process and interpret the	Writton tost / Oral tost	20%
/Laboratory/Project	results in practical activities.	Whiteh lest / Oral lest	
	The final grade in the		
	laboratory (L) represents the		
	arithmetic mean of the grades		
	from each practical session		
10.6 Minimum standa	ard of performance		
• Colloquium note ≥ 5	; Laboratory grade ≥ 5, (Colloquiu	m grade = 0.8 V + 0.2L)	

Date of filling in:		Title Surname Name	Signature
16.04.2023	Lecturer	Assoc.Prof. Bogdan Viorel Neamtu	
	Teachers in charge of application	Assoc.Prof. Bogdan Viorel Neamtu	
Date of approval in the department		Head of department	

26.06.2023

Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	68

2. Data about the subject

2.1	Subject name				Practical activity for	or graduation project	
2.2	Course responsible/lecturer						
2.3	Teachers in charge of seminars						
2.4 Y	2.4 Year of study 4 2.5 Semester 8			2.6 Assessment	Exam		
2.7 5	7 Subject Formative category						DS
cate	optionality						DI

3. Estimated total time

2.1 Number of bours per week	ofwhich	3.2		3.3		3.3		3.3	F
S.1 Number of hours per week	of which	Course		Seminar		Laboratory		Project	5
2.4 Total bours in the surrisulum	ofwhich	3.5		3.6		3.6		3.6	Г
	of which	Course		Seminar		Laboratory		Project	J
3.7 Individual study:									
(a) Manual, lecture material and notes, bibliography 10							10		
(b) Supplementary study in the library, online and in the field						10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							30		
(d) Tutoring							-		
(e) Exams and tests -							-		
(f) Other activities							-		
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 30									
3.9 Total hours per semester (3.4+3.8) 100									
3.10 Number of credit points 4									

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	Departments from UTCN or specialized companies

6. Specific competences

Professional	Competences	Knowledge about materials and technologies. Methods and procedures, selection criteria. Management of the research activities.
Cross	competences	Promoting the logical reasoning, efficiency and responsibility in the carried-out activities. Awareness of the need for continuous training and professional development in order to enter the labor market.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	• Development of skills in the field of composite materials in support of vocational training
	 Carrying out comparative documentation studies on the specifics of the topic of chosen project. 	
7.2	Specific objectives	 Preparing students to know the specific types of materials and/or equipment.
		 Training of future specialists in the direction preparation, characterization and tests of materials.

8. Contents

9.1. Lecture (cullebus)	Number of	Teaching	Notos
8.1. Lecture (synabus)	hours	methods	notes
Bibliographic documentation			
	10		
Identification and description of materials and methods used for the completion of the bachelor's thesis	15		
Visits to industrial units for the purpose of data collection if necessary	10		
Experimental research in the proposed topic, their harmonization with the chosen research topic.	25		
Modeling / optimization of the technological / ecological process	5		
Interpretation of results and their relation to other results from the literature	25		

Bibliography • Specific thematic bibliography • Regulations for drafting and supporting the draft license	10	
If necessary the times allocated for each lecture can be adapted to specific conditions.		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within a sector of design / processing / characterization of materials.

10. Evaluation

A ativity type	10.1 According to the triteria	10.2 Assessment methods	10.3 Weight in the			
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade			
	Knowledge assessment					
Practical activities	fundamental and		100 %			
	specialized					
10.6 Minimum standard of performance						
Preparation of a bib	liographic study, correlated w	ith the proposed topic, from the sp	ecialized			
literature;						
• Technical description of the materials and equipment used and establishing the characteristics of the						
material/materials;						
 Correlation of the obtained results with specialized literature; 						

Date of filling in:		
04.03.2023		
		D

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa