1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	36.00

2. Data about the subject

2.1	Subject name				Machine elements and mechanisms	
2.2	Course responsible/lecturer				Assoc. Prof. dr.eng. Noveanu Simona	
2.3	Teachers in charge of seminars				Assoc. Prof. dr.eng. Noveanu Simona	
2.4 ۱	2.4 Year of study 3 2.5 Semester 5			5	2.6 Assessment	Ex
2.7 9	2.7 Subject Formative category				· · ·	DD
cate	category Optionality					DI

3. Estimated total time

3.1 Number of hours per week	5	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Project	2
3.4 Total hours in the curriculum	70	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	14	3.6 Project	28
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								20		
(b) Supplementary study in the library, online and in the field								5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								25		
(d) Tutoring										
(e) Exams and tests										5
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 55										
3.9 Total hours per semester (3.4+3.8) 125										
3.10 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General physics, General mechanics
4.2	Competence	Analysis and synthesis capacity

5. Requirements (where appropriate)

5.1	For the course	Online, Microsoft Teams
5.2	For the applications	Online, Microsoft Teams

6. Specific competences

		After completing the course, the students will be capable to:
nal	ces	Understand the fundamental principles of mechanical design;
ssio	ten	Know the machine parts and their role in various mechanical constructions;
Professional	competen	Use technical documentation in order to design various machine parts;
Pc	co	Use various CAD software such as SolidWorks, AutoCad etc. in mechanical design.
	es	Personal and professional development throughout continuously training, constant
S	ence	communication and conceptualization, dynamic and informed decision making.
Cross	competences	
	a m	
	ŭ	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	To develop the professional skills in the field of mechanical		
/.1	General objective	design.		
		To develop student understanding of the theoretical		
		background for basic and advanced kinematics and synthesis of		
7.2	7.2 Specific objectives	mechanisms to achieve desired motion.		
		To introduce students to basic and advanced computer-based		
		tools for analysis and synthesis of mechanisms.		

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes
8.1. Lecture (synabus)	of hours	methods	NOLES
1. Fundamentals of Machine elements and mechanisms	2		
2. Bar mechanisms.	2		
3. Gear Trains.	2		
4. Cam design.	2		
5. Design of bolted joints.	2		
6. Shafts-hub connections. Key joint calculation. Spline	2	_	
connections.		Online,	
7. Design of pin assemblies.	2	Microsoft Teams	
8. Shafts. Shafts components.	2		
9. Gearings.	2		
10. Cylindrical gearings.	2		
11. Bevel gearings.	2]	
12. Worm gearings.	2		
13. Rolling bearings.	2		
14. Design of bearings units.			
Bibliography			

Bibliography

1. Antonescu, P. Mecanisme, Editura Printech, București, 2003.

2. Buiga, O., Organe de mașini. Proiectarea optimală a transmisiilor mecanice cu angrenaje, Ed. Risoprint, Cluj-Napoca, 2018.

- 3. Crețu, S.M. Mecanisme analiză structurală. Teorie și aplicații, Editura Sintech, Craiova, 2010.
- 4. Filip, V. Mecanisme, Editura Bibliotecha, Târgoviște, 2003.
- 5. Grote, K.H, Antonsson, E.K. Springer Handbook of Mechanical Engineering, Springer-Verlag Berlin Heidelberg, 2009;
- 6. Haragâș, S., Pop, D., Buiga, O. Transmisii cu șuruburi. Calcul și proiectare Ed. Todesco, Cluj-Napoca, 2013.
- 7. Haragâş, S., Pop, D. Organe de maşini. Aplicații, Ed. Risoprint, Cluj-Napoca, 2018.
- 8. Haragâş S. Organe de maşini, Ed. Napoca Star, Cluj-Napoca, 2014.
- 9. Handra Luca, V., Stoica, I.A. Introducere în teoria mecanismelor, vol. I, Editura Dacia, Cluj-Napoca, 1982.
- 10.Noveanu, S., Mecanisme cu bare, Editura UTPress, Cluj-Napoca, 2020.
- 11.Pop, D., Haragâş, S. Organe de maşini, Ed. Risoprint, Cluj-Napoca 2014.

8.2. Laboratory	Number of hours	Teaching methods	Notes
1. Analysis for bar mechanisms	2		
2. The gear ratio of the gear's trains.	2	Online,	
3. Bolted joints (threaded fasteners).	2	Microsoft	
4. Eficiency of threaded assemblies.	2	Teams	
5. Shafts-hub connections. Key joint and spline connections.	2		
6. Cylindrical gearings.	2		
7. Bevel and worm gearings.	2		

Bibliography

- 1. Maros, D., ş.a. Mecanisme, Îndrumător de lucrări, Lito. IPC-N, Cluj-Napoca 1984.
- 2. Noveanu, S. Fascicule lucrari Mecanisme, 2019.
- 3. Tătar, M.O., Elemente de inginerie mecanică. Îndrumător de laborator, Editura UTPress, Cluj-Napoca, 2013.

8.2. Project: designing a screw-nut mechanism		Teaching methods	Notes
o.z. Project. designing a screw-nut mechanism	of hours		NOLES
1. Fundamentals of mechanical design. Analysis of the	2		
mechanism.			
2. Selecting the design solution.	2		
3. Thread calculus.	2		
4. Screw design.			
5. Strength calculus of the power screw.	2	Online,	
6. 3D model of the screw.	2	Microsoft Teams	
7. Nut design.	2	Teams	
8. 3D representation of nut.	2		
9. Design and calculus of mechanism components.	2		
10. Driving mechanism design.	2		
11. Drawings for nut.	2		
12. Drawings for screw.	2		
13. Drawings for mechanism assembly, nut and screw.	2		
14. Deadline for submitting the project.	2		

Bibliography

1. Haragâș, S., Pop, D., Buiga, O. Transmisii cu șuruburi. Calcul și proiectare Ed. Todesco, Cluj-Napoca, 2013.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Machine elements and mechanisms course aims to introduce the most basic machine parts, giving insight to the engineering speciality with valuable contributions in training the future mechanical engineers as a designer.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the			
, ,,			final grade			
	Exam consisting of various	Written exam:				
10.4 Course	course problems	Mechanism	ExamM=40%			
		Machine Elements	ExamME=60%			
10.5 Seminars	Interview regarding the	Discussion regarding the project	LabM=40%			
/Laboratory/Project	mechanical design	and the laboratories practical				
	fundamentals	activities	LabME=A/R			
10.6 Minimum standard of performance						
G = 0.3·(0,6·ExamM+0.4·LabM)+0.7·(0,6·ExamME+0,4·PME) where: ExM≥5, LabM≥5, ExME≥5, PEM≥5						

Date of filling in:		Title Surname Name	Signature
19.04.2023	Lecturer	Assoc. Prof. dr.eng. Noveanu Simona	
	Teachers in charge of	Assoc. Prof. dr.eng. Noveanu Simona	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	37.00

2. Data about the subject

2.1	Subject name				Surfaces corrosion		
2.2	Course responsible/lecturer				Conf. dr. ing. Horațiu Vermeșan		
2.3	Teachers in ch	narge	of seminars		Conf. dr. ing. Horați	u Vermeşan	
2.4 Y	ear of study	3	2.5 Semester	1	2.6 Assessment	С	
2.7 5	2.7 Subject Formative category					·	DS
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Projec	:
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	3.6 14 3.6		:
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y						16
(b) Supplementary study in	the li	orary, onli	ne and i	n the	e field					15
(c) Preparation for seminar	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								15	
(d) Tutoring								6		
(e) Exams and tests								3		
(f) Other activities								3		
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

1 1	Curriculum	Mathematical analysis, Physics, Chemistry, Materials science and
		engineering, Materials technology.
		Basic notions of electrochemistry, information and documentation,
4.2	Competence	team activity, use of data acquisition information technologies and
		their processing.

5.1	For the course	Laptop + for figures, tables and images;
5.2	For the applications seminarului / laboratorului / proiectului	Online presentation: specific laboratory instruments (millivoltmeters, milliammeters, current sources, saturated calomel reference electrodes, working electrodes of different metals), pH- meter; conductivity; analytical balance; rated balloons etc.

6. Specific competences

		The main theoretical (fundamental notions of thermodynamics and electrochemical kinetics) and
		applied (implications of these aspects in corrosion and corrosion protection) aspects of
a	ses	electrochemistry;
sion	tenc	Emphasis is placed, in particular, on the applicability of the concepts covered: causes and effects
Professional	competences	of corrosion, corrosion rate, methods and techniques of corrosion protection;
Pro	corr	Through the related practical works, the aim is both the formation of skills for experimentation
		and solving numerical applications related to the corrosion phenomenon and the initiation in
		finding the optimal solutions for corrosion protection.
		- analysis of corrosion and current methods of preventing and / or combating corrosion in the
	ses	case of local or national targets;
SS	tenc	- the estimative and laboratory study of the evolution of the corrosion of some parts, structures,
Cross	competences	etc .;
	соп	- estimating the impact of corrosion over certain periods of time;
		- building a mode of impact of corrosion, including economic impact.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Acquisition of theoretical knowledge and practical skills in the field of corrosion and corrosion protection.
7.2	Specific objectives	 Assimilation of theoretical knowledge on corrosion and protection against corrosion. Obtaining skills for the development of corrosion and corrosion protection control and management systems projects.

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes
8.1. Lecture (synabus)	hours	methods	Notes
Defining corrosion. Some economic aspects of corrosion.	2		
Classification of corrosion processes.			
Gas corrosion (chemical). Thermodynamics of dry gas	2		
corrosion. Kinetics of corrosion in dry gases. The		Exposure	
mechanism of dry gas corrosion. Oxidation of metals at		Conversation	
temperatures. Oxidation of metals at high temperatures.		Description	
Oxidation of alloys in gases. Corrosion of metals and alloys	2	Problematic	
in industrial gases at high temperatures. Corrosion of			
steels in sulfur compounds. Corrosion of metals in chlorine			
and hydrochloric acid. Corrosion of metals in non-polar			

	1	
liquid media. Corrosion of metals and alloys in liquid fuels		
and oils. Factors influencing gas corrosion.		
Electrochemical (wet) corrosion. Thermodynamics of	2	
electrochemical corrosion (wet). Kinetics of		
electrochemical corrosion (wet). The influence of different		
factors on electrochemical corrosion.		
Metal passivation	2	
Corrosion by microbial attack. Bacterial corrosion of	2	
stainless steels. Biological corrosion and the human body.		
Forms of corrosion. Generalized corrosion. Galvanic	2	
corrosion.		
Localized corrosion. Intergranular corrosion. Pitting	2	
corrosion. Weld corrosion. Cavernous corrosion. Filiform		
corrosion. Selective corrosion. Corrosion by differential		
aeration. Corrosion under paint.		
Concrete corrosion. Corrosion by crevice effect. Corrosion	2	
under voltage. Corrosion due to hydrogen embrittlement.		
Fatigue corrosion. Friction corrosion. Erosion corrosion.		
Cavitation corrosion.		
Corrosion in water. Water characterization. Factors that	2	
determine the corrosivity of water.		
Atmospheric corrosion. Characterization of atmospheres.	2	
Classification of atmospheric corrosivity. Dry atmospheric		
corrosion. Wet atmospheric corrosion. Corrosion in the		
industrial atmosphere. Corrosion in the marine		
atmosphere. Corrosion in the rural atmosphere.		
Soil corrosion. Soil characterization. Soil corrosivity.	2	
Factors that determine soil corrosivity.		
Methods for testing and measuring corrosion. Methods for	2	
determining corrosion.		
The impact of corrosion on the environment and society.	2	
The impact of corrosion on oil and gas transportation. The		
impact of corrosion on the water supply network,		
sewerage. The impact of corrosion on the pharmaceutical		
and food industry. The impact of corrosion on electricity		
production. The impact of corrosion on buildings,		
constructions. The impact of corrosion on shipping. The		
impact of corrosion on the car industry.		
Bibliography		

1. R. Winston Revie, Herbert H. Uhlig, Corrosion and Corrosion Control, An Introduction to Corrosion Science and Engineering, 2008 John Wiley & Sons, Inc.

2. Philip A. Schweitzer, Fundamentals of Corrosion Mechanisms, Causes, and Preventative Methods, 2010 by Taylor and Francis Group, LLC.

	Number	Teaching	Natas
8.2. Laboratory	of hours	methods	Notes
Presentation of laboratory works. Rules for labor	2		
protection, firefighting and environmental protection.			
Aspects of materials destruction by corrosion. Oxide			
formation on steel (corrosion)			
Electrochemical corrosion testing of metals, by measuring	2		
the volume of gas resulting or consumed in the corrosion			
reaction in acidic and / or basic medium			
Corrosion potential of metals at electrochemical corrosion.	2	Exposure	
Galvanic corrosion testing (contact corrosion)		Conversation	
Differential aeration corrosion - the drip method.	2	Description	
Differential aeration corrosion - concentration cell		Experiments	
method. Thermal corrosion cells - measurement of the			
corrosion potential of thermal corrosion cells.			
Anodic oxidation (anodizing) of aluminum and its alloys	2		
(with conversion layers). Compaction of aluminum oxide			
films. Coloring of anodized aluminum.			
Protection of metals against corrosion by electrochemical	2		
deposits of zinc layers. Porosity of electrodeposited layers.			
Establishing the optimal parameters for the	2		
electrochemical deposition of metals, using the Hull cell.			
Presentation of the file with works. Evaluation of results.			
Bibliography			
VERMEŞAN, H., Corrosion and Anticorrosive Protection - labo	oratory work	s, Ed. Risoprint, (Cluj-Napoca,
2010, ISBN 978-973-53-0313-6			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Regarding the course content and the formulation of concepts and examples for teaching, the holders of the discipline consulted the scientific materials and practical applications published in the country and abroad. They have also consulted and continue to collaborate with industry and industry professional associations, and other teachers.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Quiz with 30 questions from the theoretical and practical notions presented.	Written test - evaluation duration: maximum 3 hours	80%
10.5 Laboratory	Interpretation and evaluation of experimental results sent	Practical test - oral presentation, duration 1 hour	20%

	by the teacher.					
10.6 Minimum standa	10.6 Minimum standard of performance					

Correct answer to at least 10 questions and obtaining the grade allowed for the practical test

Date of filling in:		Title Surname Name	Signature
20.03.2023	Lecturer	Conf. dr. ing. Horațiu VERMEŞAN	
	Teachers in charge of application	Conf. dr. ing. Horațiu VERMEȘAN	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	38.00

2. Data about the subject

2.1	Subject name				Technological processes in materials engineering I (Heat treatments)			
2.2	.2 Course responsible/lecturer				-	Lecturer dr.eng. Sas Boca Monica –		
2.2	course respon				Monica.Sa.Boca@ip	Monica.Sa.Boca@ipm.utcluj.ro		
2.2	Toochors in ch	Teachers in charge of seminars			Lecturer dr.eng. Sas Boca Monica –			
2.3					Monica.Sa.Boca@ip	m.utcluj.ro		
2.4 Y	'ear of study	3	2.5 Semester	1	2.6 Assessment		E	
2.7 5	Subject Formative category						DD	
cate	ategory Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	2	3.3 Project	-
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	28	3.6 Project	-
3.7 Individual study:					•		•			
(a) Manual, lecture material and notes, bibliography								14		
(b) Supplementary study in the library, online and in the field							6			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							19			
(d) Tutoring								3		
(e) Exams and tests							2			
(f) Other activities							-			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 44										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	-

5.1 For the course -	5.1 For the course	-
----------------------	--------------------	---

5.2	For the applications	The presentation at the exam is conditioned by the complete performance of the laboratory works.

6. Specific competences

Professional	 To know the theoretical principles of volume heat treatments (annealing, hardening, tempering), as well as the fundamental elements of their application technology; To understand the microstructural transformations that take place when heating and cooling of alloys in different regimes and the implications of the parameters of the heat treatment regime on the microstructure and properties of the product subjected to these technological operations; To know and interpret the transformation diagrams for cooling of steels (IT and CCT diagrams); To know the criteria according to which the volume heat treatment is prescribed for different applications (parts, semi-finished products and tools) taking into account the material and the pre-established requirements; To characterize the microstructure of a heat treated alloy; Application of basic principles and methods for solving problems in the exploitation of materials processing technologies, in order to make technological flows more efficient; Appropriate use of standard criteria and methods for the analysis and evaluation of materials processing technologies, and their implementation in accordance with the norms of quality, environment and labor protection.
Cross competences	 Carrying out activities and exercising the specific roles in the teamwork, on different hierarchical levels, promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others, diversity and multiculturalism and continuous improvement of one's activity. Objective self-assessment of the need for continuous professional training, in order to enter the labor market and to adapt to the dynamics of its requirements and for personal and professional development. Effective use of multilingual skills and knowledge of information and communication technology.

7. Discipline objectives (as results from the key competences gained)

		The course aims that student will acquire the essential
7.1	Conoral chiestive	knowledge regarding the theory and practical aspects of volume
/.1	General objective	heat treatments applied to metallic products (semi-finished
		products, parts and tools).
		It is envisaged that at the end of the course students will know:
		• theoretical and practical aspects (purpose, materials to which
		it is applied, basic principles, technological elements,
		applications) of volume heat treatments (annealing, hardening,
		tempering) applied to the main categories of alloys;
7.2	Specific objectives	 the implications that the heat treatments have on the
		microstructure and properties resulting from the heat
		treatments and, consequently, to be able to prescribe the
		volume heat treatment that must be applied to a product to
		ensure its imposed mechanical / functional properties;
		 solving some problems in the application of heat treatment

8. Contents

Q 1 Looture (sullabus)	Number	Teaching	Netes
8.1. Lecture (syllabus)	of hours	methods	Notes
Course 1. Introductory notions. Basic operations of a heat	2		
treatment. Technological parameters of the thermal cycle.			
Course 2. Microstructural characteristics and properties of	2		
the structural components of the Fe-C diagram - synthesis.			
Course 3. Calculation of heating and soaking times.	2		
Construction of heat treatment diagrams.			
Course 4. Isothermal structural transformations when	2		
cooling steels (IT diagrams).			Computer +
Course 5. Structural transformations at continuous cooling	2		video
(CCC diagrams). Homogenization annealing.			projector
Course 6. Normalization, stress relieving, and softening	2		and classic
(globulization) annealing.			board will be
Course 7. Martensitic hardening. Hardening methods.	2	Lecture and	used.
Course 8. Hardenability and methods for its determination.	2	dialogue with	Video
Residual stresses. Hardening defects.		the students	recordings of
Course 9. Tempering: structural transformations during	2		heat
tempering, types of tempering, particularities regarding			treatment
the tempering process.			technologies
Course 10. Thermomechanical treatments.	2		will also be
Course 11. Heat treatments applied to cast iron parts.	2		presented.
Course 12. Heat treatments applied to some representative	2		p
parts and semi-finished products. Heat treatments applied			
to stainless steels.			
Course 13. Heat treatments applied to tool steels and main	2]	
types of tools.			
Course 14. Hardening by precipitation. Heat treatments	2]	
applied to aluminium and copper alloys.			
Dibliggraphy			•

Bibliography

- 1. Dossett, J.L., Boyer, H.E. Practical Heat Treating, Second Edition, ASM International, Ohio, 2006.
- 2. ASM Volume 4, Heat Treating, ASM International 1991.
- 3. Course notes delivered to students in digital format (Word, Power Point).
- 4. Vermeşan H., Mudura P., Vermeşan G., Berar A. Bazele teoretice ale tratamentelor termice, Editura Universității din Oradea, 2002.
- 5. Munteanu, A., Munteanu, D., Tratamente termice si termochimice teorie si aplicații, Editura Universității Transilvania din Brașov, 2007.
- 6. Socaciu, T., Moisoiu, A., Tratamente termice, Editura Universității "Petru Maior" Tg. Mureş, 2011.
- 7. Dulămiță, T. ş.a., Tehnologia tratamentelor termice, EDP, București, 1982.
- 8. Vermeşan, G. ş.a., Procedee speciale de tratamente termice, Litografia Institutului Politehnic Cluj-Napoca, 1990.
- 9. Vermeşan, G., Îndrumător pentru tratamente termice, Litografia Institutului Politehnic Cluj-

Napoca, 1987.

10. Relevant web sites.

8.2. Laboratory	Number	Teaching	Notes
8.2. Laboratory	of hours	methods	Notes
Work 1. Knowledge of the main equipment in the heat	2		
treatment laboratory. Norms of labor protection in the			
heat treatment laboratory.			
Works 2-3. Calculation of heating curves for thin parts.	4		
Experimental verification of heating curves for thin parts			
made of different alloys.			
Work 4. Determinations and quantitative measurements	2		
using the metallographic microscope.		Discussions	
Works 5-6. Appreciation of the results of different heat	4	with the	The
treatments by measurements of hardness and toughness		students,	laboratory
and the correlation with the link between microstructure		quizzes and	equipment
and properties.		practical	and
Work 7. Equilibrium and out-of-equilibrium structures in	2	operations for	apparatus
the Fe-C diagram. Continuous hardening of C 45 and C90U		the laboratory	will be used
steels.		works	
Work 8. Determining the hardness of steels by the method	2		
of frontal hardening (Jominy method).	2		
Works 10-11. Establishing of the tempering parameters for			
carbon, alloy and tool steels.	4		
Works 12-13. Calculation of heating curves for solid parts	4	7	
made of different alloys.	4		
Work 14. Industrial visit.	2		

Bibliography

- 1. Laboratory notes delivered to students in a digital format.
- 2. Munteanu, A., Munteanu, D., Tratamente termice și termochimice, teorie și aplicații, Editura Universității Transilvania din Brașov 2007.
- Ivanus, R. Tratamente termice: îndrumător pentru lucrări de laborator, Editura Universității din Craiova, 2001.
- 4. Vermeşan, G. ş.a., Tratamente termice Lucrări de laborator, I. P. Cluj-Napoca, 1987.
- 5. Cojocaru, M., Tarcolea, M., Modelarea interacțiunilor fizico-chimice ale produselor metalice cu mediile, Editura Matrix Rom, București 1998.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies are in accordance with the requirements of employers regarding the

necessary knowledge of engineers working in heat treatment workshops, design departments

(conception and technology), quality assurance services, expertise and consulting companies in the field of heat treatment.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the

			final grade
10.4 Course	Grid test (20 questions), solving 5 theoretical topics with clearly specified requirements and solving 2 applications.	Written exam, 2 hours.	80%
10.5 Laboratory	Completion of the 14 laboratory works.	Evaluation of laboratory works.	20%
10.6 Minimum stan	dard of performance	<u>.</u>	·
	least 4 points out of a maximu mum passing grade (five) for la		

Date of filling in:		Title Surname Name	Signature
26.03.2023	Lecturer	Assoc.Prof.dr.eng. Gavril Negrea	
	Teachers in charge of	Lecturer .dr.eng. Monica Sas Boca	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	39,00

2. Data about the subject

2.1	Subject name				Powder metallurgy			
2.2	Course responsible/lecturer				S.l.dr.ing. Thalmaier Gyorgy			
2.3	Teachers in charge of seminars				S.l.dr.ing. Thalmaier Gyorgy			
2.4 ۱	2.4 Year of study 3 2.5 Semester 5			5	2.6 Assessment	Exam		
2.7 9	2.7 Subject Formative category						DS	
cate	ategory Optionality						DOB	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.8
(b) Supplementary study in the library, online and in the field							-			
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	s, pc	ortfolios, essa	ys	1	.4
(d) Tutoring										2
(e) Exams and tests										2
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 36										
3.9 Total hours per semester (3.4+3.8) 78										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	4.2 Competence	Basic knowledge of Technical Drawing, Materials Science and
4.2	competence	Materials Technology

5.1	For the course	Lectures online MS Teams/onsite
5.2	For the applications	Applications online MS Teams /onsite

6. Specific competences

_		
		After completing the discipline students will be able to:
nal	ces	- To understand the technological processes in Powder Metallurgy;
Professional	competences	- To choose an elaboration strategy for a given product;
ofe	npe	- To use the specific PM investigation methods.
Pr	cor	
	es	To know how to use laboratory equipment;
S	competences	to understand the technological process of manufacturing a part through powder metallurgy
Cross	pet	- To choose a suitable material according to the characteristics of the part to be manufactured
Ŭ	lmo	
	ŭ	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of skills related to processing parts by powder metallurgy.
7.2	Specific objectives	Knowledge of the equipment used in the manufacture of parts by powder metallurgy; Knowledge of materials processing processes through MP; Knowledge of technological documentation on design technological processes of manufacturing parts by metallurgy powders; Related labour and environmental protection issues.

8. Contents

8.1. Lecture (syllabus)		Number of	Teaching	Notes
		hours	methods	Notes
1. Introduction. H	istory of M.P. General	2	Interactive	
manufacturing	route specific to Powder Metallurgy		methods using	
2. Powder manufa	acturing processes	6	digital	Digital media
3. Powder proper	ties	6	equipment,	content
4. Powder formin	g processes	8	video	included
5. Sintering		4	materials,	
6. Secondary Ope	rations applied to PM parts	2	cases studies	

Bibliography

1. Metals Handbook v. 7. Powder Metallurgy, Powder Metallurgy ASM, Ohio, USA, 1984.

- 2. Material and Powder Properties; Handbook 1; Hoganas Handbook for Sintered Components; Hoganas AB; 2004.
- 3. Production of Sintered Components; Handbook 2; Hoganas Handbook for Sintered Components; Hoganas AB; 2004.

4. Design and Mechanical Properties; Handbook 3; Hoganas Handbook for Sintered

Components; Hoganas AB; 2004.

5. German, R.M; Powder Metallurgy & Particulate Materials Processing; Metal Powder Industries Federation; Princeton, NJ; 2005.

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes		
	of hours	methods	Notes		
1. Presentation of the pressing and sintering equipment	2				
from the MP laboratory. Safety rules in the MP lab,					
presentation of the laboratory works.					
2. Measuring metal powders	2				
3. Methods for obtaining metal powders. The influence of	2	Practical	Prepare lab		
the manufacturing method on the powders shape.		training	report for		
4. Determination some technological properties of metal	2	1	labs 2-7		
powders					
5. Presability of metallic powders.	2				
6. Determination of the specific surface area of the	2				
powders					
7. Sintering studies. Herring's scaling law.	2				
Bibliography:					
German, R.M; Powder Metallurgy & Particulate Materials Processing; Metal Powder Industries					
Federation; Princeton, NJ; 2005					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be used in design, execution and control activities in the field of powder metallurgy and other industrial sectors where powders are used

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	5-10 questions	Written exam 2 h	75%			
10.5 Seminars	Overall activity + short	Oral/written exam 0.5 h	25%			
/Laboratory/Project	quiz from lab reports		2370			
10.6 Minimum standard of performance						
Minimum grade of 5 obtained at course exam and laboratory tests.						

Date of filling in:		Title Surname Name	Signature
05.04.2023	Lecturer	sl.dr.ing Gyorgy Thalmaier	
	Teachers in charge of	sl.dr.ing Gyorgy Thalmaier	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	40

2. Data about the subject

2.1	Subject name			Man	ag	ement		
2.2	Course respor	Course responsible/lecturer			.in	g. Prica Calin		
2.3	Teachers in ch seminars	ichers in charge of ninars			.in	g. Prica Calin		
2.4	.4 Year of study 3 2.5 Seme			ster	2	2.6 Assessment	colloquium exam	
2.7 Subject Formative cate			egory		•		DD	
category Optionality							DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laboratory	0	3.3 Project	0
3.4 Total hours in the curriculum		of which	3.5 Course	28	3.6 Seminar	14	3.6 Laboratory	0	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	у					1	4
(b) Supplementary study in the library, online and in the field						1	.0			
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	ts, po	ortfolios, essa	ys	-	7
(d) Tutoring									(C
(e) Exams and tests										2
(f) Other activities									(C
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	It's not necessary
4.2	Competence	It's not necessary

5.1	For the course	Presence at Technical University of Cluj-Napoca
5.2	For the applications	Presence at seminars is mandatory.

(laboratory)	
--------------	--

6. Specific competences

		To know the management function of a company, techniques and methods of management
		function implementation.
		To understand the organisation mode of a commercial society from functional and structural
	S	point of view.
ona	nce	To identify the management methods and techniques to apply in a specific context by company
ssic	ete	board.
Professional	competences	Capacity of working in a managerial team based on managerial plan and a laborious
	CC	organization.
		To know to calculate and to analyse various performance indicators for an activity in a
		commercial society.
		Capacity to apply specific instruments of managerial activity.
	SS	To know the basic concepts from management field and their connection with other sciences,
s	ence	including engineering.
Cross	pete	Capacity to respect and apply professional ethical principles specific to managerial activity.
	competences	
	Ö	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing competences in the management domain, learning the fundamental knowledge of management systems, methods and techniques.
7.2	Specific objectives	Assimilation of knowledges of management process and company organisation.

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes
8.1. Lecture (synabus)	hours	methods	Notes
The object of the discipline	2		
The company concept, the company's typology	2	Lecture	
Management process: structure and stages of	2		
management process		PowerPoint	
Management functions	4	presentation	
Processual organisation of a company	2		
Company functions	2	Interactive	
Structural organisation of a company	2	teaching mode	Multimedia
Decision system of a company: concept of managerial	2		Martimetia
decision		Dialogue -	Blackboard
Managerial systems, methods and techniques	2	conversation	
Management by objectives, management by projects	2	professor -	
Product management; management by budges	4	student	

Management techniques based on innovation	2							
Bibliography								
[1]. Steven Cohen and William Eimicke, Management Fundamentals, Columbia University Press,								
2020, ISBN: 9780231194495;								
[2]. Ricky Griffin, Fundamentals of Management, Ed. Co.[3]. Stephen P. Robbins Mary A. Coulter, Management,								
Limited, 2017.		n, Eu. Pearson E	uucation					
9.2 Laboratory	Number	Teaching	Notes					
8.2. Laboratory	of hours	methods	Notes					
1.	2	Explication,	Blackboard, computer.					
2.	2							
3.	2							
4.	2	conversation,						
5.	2	Case Study.	computer.					
6.	2							
7.	2	-						
Bibliography								
[1]. Steven Cohen and William Eimicke, Management Fundamentals, Columbia University Press, 2020, ISBN: 9780231194495;								
[2]. Ricky Griffin, Fundamentals of Management, Ed. Co	engage, 2014	, ISBN: 1285849	043					

[3]. Stephen P. Robbins Mary A. Coulter, Management, Global Edition, Ed. Pearson Education Limited, 2017.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences will be necessary to the employees which will work in the management and marketing departments of the companies and to the future engineers in the materials science field which must be at date with the management methods and techniques.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Answers to the questions related to the subjects	Written test - 1	75%				
10.4 Course	presented at courses.	hours					
10.5	Solving problems similar with the ones presented at	Written test – 1	25%				
Laboratory	seminars.	hour	2370				
10.6. Minimum standard of performance							
General exami	nation mark ≥ 5						

Date of filling in:		Title Surname Name	Signature
10.03.2023	Lecturer	s.l.dr.ing. Prica Calin	
	Teachers in charge of application	s.l.dr.ing. Prica Calin	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	41.00

2. Data about the subject

2.1	Subject name				Applied informatics II		
2.2	Course responsible/lecturer				Lecturer Ph.D Eng. DAN NOVEANU		
2.3	Teachers in charge of seminars				Lecturer Ph.D Eng. DAN NOVEANU		
2.4 Y	2.4 Year of study 3 2.5 Semester 1			2.6 Assessment	Exam		
2.7 5	2.7 Subject Formative category					·	DF
category Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar	-	3.3 Laboratory	2	3.3 Proje		-
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar	-	3.6 Laboratory	28	3.6 Project		-
3.7 Individual study:											
(a) Manual, lecture materia	l and	notes, bib	liograph	У						1	2
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field					1	8
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		1	0
(d) Tutoring										1	0
(e) Exams and tests										5	3
(f) Other activities							C)			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58											
3.9 Total hours per semester (3.4+3.8) 100											
3.10 Number of credit points 4											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Technical drawing knowledge.

5.1	For the course	On-line
5.2	For the applications seminarului / laboratorului / proiectului	On-line

6. Specific competences

	-	
		After completing the discipline students will be able to:
		 use the SolidWorks interface and organize the workspace.
a	ses	 make complete 3D technical drawings (construction, quotation, modification) as well as
sion	tenc	making 2D Drawing drawings (views, sections, quotations)
Professional	competences	define the floorboards and print them.
Pro	con	reproduce a given outline.
		 present on a board with an appropriate standardized format the geometric pattern of a
		required part.
	es	Acquiring knowledge specific to the field of engineering for the purpose of vocational training
SS	enc	and entry into the labour market.
Cross	pet	
	competences	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of competences in the field of assisted design.
7.2	Specific objectives	Development of 3D vision in space. Assimilation of theoretical knowledge on the use of SolidWorks. Ability to make 2D and 3D drawings in SolidWorks.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction.	2		
The appearance of the software interface. Working			
environments. Graphic tools. View built entities.			
Establishing the basic entity in the making of parts.	2		
Creating parts by extrusion.			
Creating parts through revolution. Making holes, Chamfers	2	Exposure, discussion	On-line,
and fillets.		discussion	TEAMS
Making Entities through "Sweep", "Offset", "Pattern" and	2		
"Mirror"			
Create parts using the "Loft" command	2	-	
Create a mould for a previously made piece.	2		
Create a complex part, fully defined. Assemblies.	2		

Bibliography

1. Mikell P. Groover, Emory W. Zimmers, CAD/CAM: Computer-Aided Design and Manufacturing, Prentice-Hall International, Inc. 1984.

2. Andrew Tizzard, An Introduction to Computer Aided Engineering, McGraw-Hill Book Company, 1994.

3. SolidWorks Company, User Manual.

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes		
	of hours	methods			
1 Working environments. Establishing the basic entity at	2				
the time of creation of the parts.					
2 Drawing of a piece using "Extrude"	2				
3 Examples of parts made by extrusion.	2				
4 Drawing of a revolution part.	2				
5 Examples of parts made by revolution.	2				
6 Adding different additional entities.	2				
7 Examples of parts to which additional entities have been	2	Exposure and	On-line,		
added.		apps	TEAMS		
8 Creating prts through "Loft"	2				
9 Examples of parts created with "Loft".	2				
10 Creating molds.	2				
11 Dimensioning	2				
12 Create a complex, fully defined part.	2				
13 Creating a 2D piece in «Drawing».	2	1			
14 Assemblies	2	1			
Bibliography			•		
1.Mikell P. Groover, Emory W. Zimmers, CAD/CAM: Computer-Aided Design and Manufacturing,					

Prentice-Hall International, Inc.1984.

2. Andrew Tizzard, An Introduction to Computer Aided Engineering, McGraw-Hill Book Company, 1994.

3. SolidWorks Company, User Manual.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competencies will be required for employees working in design, manufacturing, manufacturing services.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	Theory questions.	On-line Grid Questionnaire – Duration of Evaluation 1/2 hours	20%		
10.5 Seminars /Laboratory/Project	Themes, independent of laboratory hours, consisting of the making of parts.Making in SolidWorks a drawing of a part at first sight.	On-line Practical sample – duration 2 hours	80%		
10.6 Minimum standard of performance					
Full realization of homework. Make at least 50% of the assessments.					

Date of filling in:		Title Surname Name	Signature	
18.02.2023	Lecturer	Lecturer Ph.D Eng. DAN NOVEANU	WW	
	Teachers in charge of	Lecturer Ph.D Eng. DAN NOVEANU	M	
	application			
Date of approval in th	e department	Head of department		
26.06.2023		Ass.prof.dr.eng. Mariana Pop		
Date of approval in t 10.07.2023		Dean Prof.dr.eng. Cătălin Popa	3	

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	42.00

2. Data about the subject

2.1	Subject name				Theory of plastic deformation and fracture of materials		
2.2	Course responsible/lecturer				Assoc. prof. Pop Mariana		
2.3	Teachers in ch	Feachers in charge of seminars			Assoc.prof. Pop Mariana, Assoc.prof.Neag Adriana		
2.4 ۱	2.4 Year of study III 2.5 Semester 5		5	2.6 Assessment Exam			
2.7 9	2.7 Subject Formative category					DD	
cate	category Optionality					DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Projec	:
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	14	3.6 Projec	:
3.7 Individual study:										
(a) Manual, lecture materia	(a) Manual, lecture material and notes, bibliography							21		
(b) Supplementary study in the library, online and in the field							7			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring								7		
(e) Exams and tests							3			
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
		Notions of calculation: differential, integral, matrix, vectorial;
		Notions regarding: material classification, iron-carbon diagram;
4.2	Competence	Notions of computer operation;
		Use of computer aided design software for making 2D and 3D
		geometric models.

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

·	
	After completing the discipline students will be able to know:
	- plasticity hypotheses, plastic deformation laws, fracture theories, methods for calculating
	efforts in plastic deformation processes;
	-the main parameters of the processes of plastic deformation and breaking of materials;
	- parameters of material flow equations for different deformation conditions;
	-influence of process parameters on the conditions of plastic deformation and fracture of
	materials.
nal ces	- use the analytical methods to establish the efforts and deformations at the plastic deformation;
sion	- analyze the data of deformability tests by various methods (traction, twisting, discharge,
Professional competences	rolling);
Pre	- interpret the hardening curves and the standardized data regarding the formability of
	materials;
	-interpret the results of a modeling and simulation program of the state of stresses and
	deformations in a sample subjected to plastic deformation.
	-measures specific deformations, efforts, temperatures and deformation speeds;
	-use the experimental installations for the study of the deformability of the materials;
	-use a program for mathematical modeling and simulation of the main parameters of plastic
	deformation (stresses, strains, strain rates, temperature).
	Application of the values and ethics of the engineering profession and responsible execution of
	professional tasks in the field of materials processing in conditions of limited autonomy and
Ses	qualified assistance.
Cross competences	Carrying out activities and exercising the specific roles of teamwork, on different hierarchical
bei	levels and the entire technological flow of processing
con	Promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others,
oss	diversity and multiculturalism and the continuous improvement of one's professional activity
ъ	Objective self-assessment of the need for continuous professional training, in order to develop
	products with superior performance and to adapt to the dynamics of market requirements
	Effective use of multilingual skills and knowledge of information technology.

7. Discipline objectives (as results from the *key competences gained*)

		Development of competencies in the field of plastic deformation		
7.1	General objective	theory, deformability of materials in support of professional		
		training.		
	Specific objectives	Assimilation of theoretical knowledge on: the state of stresses		
		and strains in a body subjected to plastic deformation, the		
7.2		parameters of industrial processes of plastic deformation, the		
		mechanisms of materials fracture, aspects regarding the		
		modeling and simulation of the state of stresses and strains.		

2. Obtaining skills for determining: the flow curves of materials,
the parameters of plastic deformation processes, the formability
of a material under given conditions.
3. Obtaining skills for the use of modeling and simulation
software in the field of plastic deformation and for interpreting
the results obtained.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.Definition of plastic deformation. Study of the stress-	2		
strain diagram in the tensile test and identification of the			
characteristic points. The connection between engineering			
and real parameters. The state of stress on plastic			
deformation. Applications.			
2. Differential equations of equilibrium of streses, tensor,	2	-	
deviator, invariants . Deformation state at plastic			
deformation; definition of deformations; the connection			
between the displacement components and those of the			
deformation; deformation state diagrams; deformation			
speed. Applications.			
3. Mechanical schemes of plastic deformation.	2		
Relationships between stresses and strains. Plasticity			
hypotheses. Energy and strength required for plastic			
deformation. Rheological models for different types of			
materials. Applications.		Prelegere,	Video-
4. Mechanisms of plastic deformation. Dislocation theory	2	conversatie	proiector
(appearance and multiplication of dislocations). Plastic			
deformation of single crystals (sliding, staining). Plastic			
deformation of polycrystals.			
5. Methods for calculating the stresses and deformations	2	-	
at the plastic deformation: the slab method, the energy			
method, the sliding lines method, the finite difference			
method, the finite element method.			
6. The laws of plastic deformation (the law of volume	2		
constant, the law of the presence of elastic deformations			
at plastic deformation, the law of additional unitary			
efforts, the law of minimum resistance, the law of			
similarity).			
7. Deformation behavior of materials. Deformation	2		
resistance and influencing factors.			
8. Formability of materials and influencing factors.	2		
Methods for determining the formability of materials.			

Superplasticity.			
9. The main effects of plastic deformation (thermal effect,	2		
hardening, texturing, phase transformations, residual			
stresses). The influence of plastic deformation on the			
properties of deformed materials.			
10. Friction on plastic deformation. Friction models	2		
(Coulomb, Tresca). Influencing factors of friction. Methods			
for determining the coefficient of friction at plastic			
deformation.			
11. The mechanism of fracture in materials. Types of	2		
rupture, theoretical fracture strength. Fracture theories.			
Ductile and brittle fracture. Factors influencing the fracture			
type. Ductile-brittle transition temperature.			
12. Creep fracture. Fatigue fracture.	2		
13. Applications of the theory of plasticity and fracture to	2		
industrial processes of plastic deformation.			
14. Elements of modeling and simulation of material flow	2		
during plastic deformation. Constitutive equations of			
material. Experimental methods for establishing the			
parameters of deformation and fracture processes.			
Bibliography		·	
1. Hosford, W., Caddell, R., Metal forming, mechanics and m			
 Kalpakian, Manufacturing Engineering and Technology, Ac Mielnik, E., Metalworking, science and engineering, McGra 			994.
4. Sluzalec, A., Theory of metal forming plasticity, Springer, 2	004.		
5. Wagoner, R., Chenot, J., Fundamentals of metal forming,	John Wiley &	Sons, 1997.	
	Number	Teaching	
8.2. Seminars /Laboratory/Project	of hours	methods	Notes
1. Experimental verification of the laws of plastic	2		
deformation.	_		
2. Experimental determination of the deformation	2	1	
	_		

deformation.			
2. Experimental determination of the deformation	2	-	
behavior of metals by tension.			
3. Determining the deformation and fracture behavior by	2	Evnesition	
compression.		Exposition, discussions,	Experimental
4. Deformation and fracture behavior by twisting.	2	experimental	installations,
5. Experimental determination of the coefficient of	2	tests,	computers,
friction.		simulations	software
6 Study of the parameters of cold plastic deformation	2	Simulations	Jonware
processes (stresses, deformations, deformation speeds,			
temperature) with the help of Forge software.			
7 Study of the parameters of hot plastic deformation	2		
processes (stresses, deformations, deformation speeds,			
temperature) with the help of Forge software.			

Neag, A., Pop, M., Plastic Deformation, Aplication, UTPress, 2009.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who carry out their activity either in the design workshops / research laboratories or in the productive sections.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	On-going evaluation based on 2 tests and final evaluation (problems and questions from theory)	Final written evaluation - duration of evaluation 2 hours	75%
10.5 Laboratory	On-going evaluation based on discussions and self-evaluations and final evaluation by test.	Discussions, tests - duration of evaluation 1 hour	25%
10.6 Minimum standa	ard of performance		

Date of filling in:		Title Surname Name	Signature
10.05.2023	Lecturer	Assoc.prof.Pop Mariana	
	Teachers in charge of	Assoc.prof.Pop Mariana	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

_		
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	43.00

2. Data about the subject

2.1	Subject name				Industrial environmental protection			
2.2	Course responsible/lecturer				Conf. dr. ing. Horațiu Vermeșan			
2.3	Teachers in charge of seminars				Conf. dr. ing. Horațiu Vermeșan			
2.4 ۱	2.4 Year of study 3 2.5 Semester 1			1	2.6 Assessment C			
2.7 5	2.7 Subject Formative category						DD	
category Optionality						DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Proje	
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	14	3.6 Proje	
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y						9
(b) Supplementary study in the library, online and in the field								6		
(c) Preparation for seminar	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								6	
(d) Tutoring								6		
(e) Exams and tests								3		
(f) Other activities	(f) Other activities								3	
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	Minimum knowledge of physics, chemistry, materials processing technologies

5.1	For the course	Laptop + for figures, tables and images;
5.2	For the applications	Online presentation: specific laboratory instruments, pH-meter;

seminarului / laboratorului /	conductivity; analytical balance; rated balloons etc.
proiectului	

6. Specific competences

To know the specific problems of environmental protection and the concept of sustainable development.	
- 9 To know matheds of applying of quality indicators for any ironmantal factors, water, atmosph	
ာ ဆို To know methods of analysis of quality indicators for environmental factors: water, atmospl	ere,
To know methods of analysis of quality indicators for environmental factors: water, atmospl soil, etc., To identify the environmental aspects of a technological process of materials processing. To know the types of monitoring and the best techniques available by fields of activity.	
🖉 🚊 To identify the environmental aspects of a technological process of materials processing.	
\vec{E} \vec{E} To know the types of monitoring and the best techniques available by fields of activity.	
The integrated approach to determine the best technological process for a certain concrete	
location and for a certain activity.	
Making connections to other disciplines studied (Materials Chemistry, Physics, Mechanics,	
Materials Technology, etc.);	
Materials Technology, etc.); Understanding the interdisciplinarity of environmental protection engineering; Promoting awareness of the importance of multidisciplinary and transversal character in	
Promoting awareness of the importance of multidisciplinary and transversal character in	
environmental protection engineering,	

7. Discipline objectives (as results from the *key competences gained*)

		Training and development of competencies regarding		
7.1	General objective	environmental protection applied in the industrial activity of		
		materials science and engineering		
		Acquiring skills on the principles of determining the basic		
7 2	Specific objectives	properties of environmental factors (water, air, soil),		
1.2		Formation of basic skills for analyzing the environmental impact		
		associated with technological processes and identifying risks.		

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Brief history of environmental issues Significant global events specific to the concept of sustainable development	2		
Practical application in industry of the concept of sustainable development. SMM. Eco-label.	2		
Analysis of industrial processes - environmental impact	4	Exposure	
Work environment	4	Conversation	
Water protection. Sources of water pollution in industrial areas	4	Description Problematic	
Atmosphere protection. Sources of air pollution	4		
Soil protection. Sources of soil pollution	4		
Industrial waste. Characteristics, collection, recovery, and storage	2		

Vibrations and noises in industry	2							
Bibliography								
1. Ochman D., Podoliński T. Environment protection in industrial areas, Jawecki Bartosz, 2014, ISBN:								
978-83-61389-42-2								
2. A. Malik, E. Grohmann, Environmental Protection Strate	gies for Susta	ainable Developm	nent, 2012,					
ISBN 978-94-007-1590-5								
3. J. Rivera, M. A. Delmas, Business and environmental pro	tection: An i	ntroduction. Hum	an Ecology					
Review, Vol. 11, No. 3, 2004,								
4. Andrzej G. Chmielewski, Bumsoo Han, Sunil Sabharwal,	Maria Helena	a Sampa, Environi	mental					
Protection: Reducing Environmental Pollution, Reference	e Module in	Earth Systems an	d					
Environmental Sciences, Elsevier, 2020, ISBN 978012409	5489, https:	//doi.org/10.101	6/B978-0-12-					
409548-9.12331-0.								
	Number	Teaching						
8.2. Laboratory	of hours	methods	Notes					
Presentation of laboratories, labor protection training	2							
Determination of water quality indicators.	2							
Determination of moisture in materials.	2	Exposure						
Granulometric analysis of soil and sludge.	2	Conversation						
Determination of sedimentation time of materials	2	Description						
suspended in wastewater.		Experiments						
Determining the noise level generated by industrial	2	1						

•		
Determining the noise level generated by industrial	2	
activities.		
Determination of microclimate parameters and light	2	
intensity in the industrial environment. Determination of		
Total Volatile Organic Compounds in Air.		
Pibliography		

Bibliography

1. U.S. Environmental Protection Agency, Recovery, Reuse, and Recycle of Industrial Waste, 1983,

2. J. Jeffrey Peirce, Ruth E Weiner, E Aarne Vesilind, Environmental Pollution and Control, Butterworth-Heinemann, 1998, ISBN-13:978-0-7506-9899-3.

 H. Koren, M. Bisesi, Handbook of Environmental Health, Lewis Publishers, 2003, ISBN 1-56670-547-9

9. Bridging course contents with the expectations of the representatives of the community, professional associations, and employers in the field

The skills acquired will be in line with the requirements that potential employers in the field of engineering and environmental protection and materials processing may have.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Correctness and complexity of the knowledge gained	Written exam - combined test (grid and solving similar topics to the course)	60%
	Interest in the presented	Oral - involvement in	10%

	notions and active	discussions and the quality of				
	presence in the course	e course questions asked by students.				
	and laboratory	Ideas for solving problems				
		addressed according to the				
		program.				
	The quality of the					
	theoretical knowledge		200/			
	acquired at the virtual	Written test - grid and solving				
10.5 Laboratory	laboratory for the specific	30%				
	basic activities of					
	environmental protection.					
10.6 Minimum standa	rd of performance					
Each student must demonstrate that he has acquired an acceptable level of knowledge and						
understanding in the field of Industrial Environment Protection and that he is able to use his knowledge						
in solving concrete technological situations. Passing the exam is conditioned by obtaining a minimum						
grade of 5 both for the evaluation of the written exam and for the practical and theoretical activity in the						
laboratory.						

Date of filling in:		Title Surname Name				
20.04.2023	Lecturer	Conf. dr. ing. Horațiu VERMEȘAN				
	Teachers in charge of application	Conf. dr. ing. Horațiu VERMEȘAN				
Date of approval in t	he department	Head of department				
26.06.2023		Ass.prof.dr.eng. Mariana Pop				
Date of approval in 10.07.202	-	Dean Prof.dr.eng. Cătălin Popa	9			

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	44.00

2. Data about the subject

2.1	Subject name				Surface engineering			
2.2	Course responsible/lecturer				Lecturer dr.eng. Noveanu Dan – Dan.Noveanu@ipm.utcluj.ro			
2.3	Teachers in ch	eachers in charge of seminars			Lecturer dr.eng. Noveanu Dan – Dan.Noveanu@ipm.utcluj.ro			
2.4	2.4 Year of study 3 2.5 Semester 2		2.6 Assessment	E	E			
2.7	2.7 Subject Formative category					[DS	
cate	ory Optionality					Ι	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	1
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	14
3.7 Individual study:								•		
(a) Manual, lecture material and notes, bibliography							,	7		
(b) Supplementary study in the library, online and in the field								5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								5		
(d) Tutoring								-		
(e) Exams and tests						,	2			
(f) Other activities							-			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 19										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	-

5.1	For the course	-
5.2	For the applications	The presentation at the exam is conditioned by the performance of
5.2	laboratorului / proiectului	the seven laboratory works and the acceptance of the project.

6. Specific competences

		• Application of basic principles and methods for solving problems in the exploitation of surface
		engineering technologies, in order to design optimal technological flows;
		• Appropriate use of standard criteria and methods for the analysis and evaluation of surface
la	ses	engineering technologies and their implementation in accordance with the norms of quality,
sior	tenc	environment and labour protection.
Professional	competences	 To know the purpose, the basic principles, the materials to which it is applied, the
Pro	con	characteristics of the modified/deposited layer, the advantages, disadvantages, the limits of
		applicability and the relative level of costs for the main surface treatments (mechanical, thermal,
		thermochemical, conversion, ion implantation, thermal spraying, physical and chemical and
		vapor deposition - PVD and CVD).
		- Carrying out activities and exercising the specific roles in the teamwork, on different
, c	ς μ	hierarchical levels, promoting the spirit of initiative, dialogue, cooperation, positive attitude,
		respect for others, diversity and multiculturalism and continuous improvement of one's activity.
to c	her	- Objective self-assessment of the need for continuous professional training, in order to enter
	רו הא רחוווף בבוונבא	the labour market and to adapt to the dynamics of its requirements and for personal and
		professional development.
	5	- Effective use of multilingual skills and knowledge of information and communication
		technology.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	The course aims that student will acquire the essential knowledge on the theory and practical aspects of surface engineering technologies (surface treatments and coatings) applied to a wide range of materials, parts, tools and semi- finished products.
7.2	Specific objectives	It is considered that at the end of the course the students will be able to: • Know the basic aspects of surface engineering technologies; • Know the main criteria according to which a surface treatment is prescribed for different applications, taking into account the material, required surface properties and the heat treatment previously applied; • Characterize a surface layer modified / deposited by surface treatments; • Prescribe surface treatment technologies; • Apply the methods of quality control specific to different of surface treatments; • Evaluate the wear resistance of surface treated materials.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Course 1. Synthesis on wear and corrosion processes. The role of surface treatments and coatings. Classification of surface treatments.	2		
Course 2. Mechanical surface treatments (surface strain hardening).	2		
Course 3. Surface hardening by induction and by flame.	2		
Course 4. Carburizing: principle, purpose, main parameters, carburizing steels, pack carburizing.	2		
Course 5. Carburization in gaseous environment:	2		
carburizing regimes, carburizing in natural gas,			
carburization in controlled atmosphere. Vacuum			Computer +
carburization and plasma carburization.			video
Course 6. Nitriding: Fe-N diagram, nitriding principle,	2	7	projector
purpose, steels for nitriding, structure and properties of the nitrided layer. Gas nitriding.			and classic board will be
Course 7. Plasma nitriding. Factors influencing the	2		used.
characteristics of the nitrided layer.		Lecture and	
Course 8. Carbonitriding and nitrocarburizing. Oxynitrocarburizing.	2	dialogue with the students	Video recordings of surface engineering technologies will also be presented.
Course 9. Thermochemical surface treatments with B, Al, Si and Cr.	2	-	
Course 10. Ion implantation. Conversion coatings.	2		
Course 11. Hardfacing: principle of the process, purpose, materials and methods of deposition.	2		
Course 12. Thermal spraying.	2		
Course 13. Introductory notions on vapor deposition	2	-	
coating (PVD and CVD methods).	-		
Course 14. Duplex treatments. Selection criteria for surface	2	-	
treatments / coatings. Case studies.			
Bibliography			
 Dossett, J.L., Boyer, H.E. Practical Heat Treating, Second ASM Volume 4, Heat Treating, ASM International 1991. Course notes delivered to students in digital format (Wo Vermesan G., ş.a., Introducere în ingineria suprafeţe G. Arghir ş.a., Procedee avansate în ingineria supra 1998 (partially in English). 	ord, Power P lor, Editura	oint). Dacia, Cluj-Napo	oca, 1999.
 H. Vermeşan ş.a., Carburarea, Editura Risoprint, Cluj-Na Gabor, C., Munteanu, D., Munteanu, A., Straturi subţi fizică din vapori, Editura Universităţii Transilvania din Br Relevant web sites . 	ri cu rol dec aşov, 2010.	corativ obținute p	orin depunere
8.2. Laboratory/Project	Number	Teaching	Notes
a) Laboratory	of hours	methods	
Work 1. Determination the intensity of the shot peening with the Almen method.	2	Discussions with the	The
Work 2. Determination of case depth for induction hardened parts.	2	students, quizzes and	laboratory equipment and
Work 3. Determination of the total and conventional depth of surface hardened thin layers.	2	practical operations for	apparatus
Work 1. Determining the denth of the carburized laver	2	the laboratory	will be used

Work 4. Determining the depth of the carburized layer

the laboratory

2

("cemented layer").		works			
Work 5. Determining the depth of the nitrided layer.	2				
Work 6. Behavior of a tool steel subjected to various	r				
thermal / thermochemical treatments.	thermal / thermochemical treatments.				
Work 7. Mechanical methods for determining the adhesion	2				
of thin layers deposited from the vapor phase.	2				
b) Project					
The project will contain 20-30 pages and will have as its them	e the desigr	n of surface treati	ment		
technology for a given part. The main chapters of the project are: analysis of the part material, analysis					
of functional role and requirements, establishing of necessary properties / functional characteristics,					
establishing of heat treatment technology and related technological calculations, design of charging					
devices, establishing of control methodology, calculation of c	osts.				

Bibliography

- 1. Vermeşan, H., Negrea, G., Ingineria suprafețelor lucrări practice, Editura Risoprint, Cluj-Napoca, 2001.
- 2. Boiciuc, S., Ingineria suprafetelor: indrumar de laborator, Galati University Press, Galati, 2010.
- 3. Vermeşan, G. ş.a., Tratamente termice Lucrări de laborator, I. P. Cluj-Napoca, 1987.
- 4. Munteanu, A., Munteanu, D., Tratamente termice și termochimice, teorie și aplicații, Editura Universității Transilvania din Brașov 2007.
- 5. Laboratory notes delivered to students in a digital format.
- 6. Relevant web sites.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies are in accordance with the requirements of employers regarding the necessary knowledge of engineers working in heat treatment/surface engineering workshops, conception and technology design departments, research laboratories, quality assurance services, expertise and consulting companies in the field of surface engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Grid test (20 questions), solving 5 theoretical topics with clearly specified requirements and solving 2 applications.	Written exam, 2 hours.	70%				
10.5 Laboratory/Project	Fulfilment of the project and of the 7 laboratory works requirements.	Evaluation of the project and laboratory works (questions, verification of calculated data and compliance with deadlines).	30%				
10.6 Minimum standard of performance							
 Accumulation of at least 4 points out of a maximum of 9 in the written exam; Obtaining the minimum passing grade (five) for the project and laboratory works. 							

Date of filling in:		Title Surname Name	Signature
26.03.2023	Lecturer	Assoc.Prof. dr.eng. Gavril Negrea	
	Teachers in charge of	Lecturer dr.eng. Dan Noveanu	
	charge of application		RAN
	1		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	45

2. Data about the subject

2.1	Subject name				Manufacturing Engineering			
2.2	Course responsible/lecturer				Lecturer dr.eng. IWE Marius Bodea - mbodea@stm.utcluj.ro			
2.3	Teachers in charge of seminars				Lecturer dr.eng. Thalmayer Gyuri, Lecturer dr.eng. Prică Călin			
2.4 ۱	2.4 Year of study 3 2.5 Semester 2		2.6 Assessment	Examination				
2.7 5	2.7 Subject Formative category			·	•	DD		
cate	category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	1
3.4 Total hours in the curriculum		of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	У						8
(b) Supplementary study in the library, online and in the field								2		
(c) Preparation for seminar	s/labo	oratory wo	rks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		6
(d) Tutoring							1			
(e) Exams and tests							2			
(f) Other activities										
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 19										
3.9 Total hours per semester (3.4+3.8)75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Materials Science and Mechanical Engineering
4.2	Competence	Good knowledge in materials science, physics, technical drawing

5. Requirements (where appropriate)

5.1	For the course	Faculty of Materials and Environmental Engineering
5.2	For the applications seminarului / laboratorului / proiectului	Materials Testing Laboratory E10, Welding Laboratory E09, Fabrication Laboratory E09/2

6. Specific competences

Professional competences	The students will be able to understand and use efficiently knowledge for planning and designing industrial manufacturing processes. They will be prepared to work in a cross-functional environment that comprises engineering, manufacturing, production control, quality assurance, continuous improvement, and business departments. The students will learn the essential manufacturing knowledge that is required to implement and manage manufacturing processes.
Cross competences	 Reading and interpreting technical drawings that refers to industrial manufacturing processes fabrication. The students will gain also manufacturing projects coordination skills, being able to respond to the basic problems encountered in manufacturing engineering like: What are the problems? What are the data? What are the unknowns? What are the constraints? What are the feasible solutions? How the solution is validated?

7. Discipline objectives (as results from the key competences gained)

7 1	General objective	Providing theoretical and practical skills required in the
/.1		industrial manufacturing processes.
7.2	7.2 Specific objectives	Acquiring the necessary skills in order to plan, design,
		implement, and manage manufacturing projects successfully.

	8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.	Product Development and Design. Advanced Manufacturing with Cloud, Internet of Things, and Sustainability.	2		
2.	Design for manufacture and assembly. Design of experiments. ANOVA and Six Sigma	2		
3.	Computer-aided Design and Manufacturing	2		
4.	Manufacturing Processes: Forming and Shaping	2	Interactive	Disital as a dis
5.	Metal Cutting, Turning and Milling Processes	2	methods	Digital media
6.	Laser Materials Processing	2	using digital equipment's,	content available and
7.	Additive Manufacturing Technologies	2	video	e-learning
8.	Abrasive Jet Machining and Electrochemical Machining	2	materials,	resources.
9.	Grinding Fundamentals	2	study cases	resources.
10.	Robotics and Automation in Manufacturing Processes	2	study subco	
11.	Machine Vision. Green Technology and Manufacturing	2		
12.	Plastic Molding Processes	2		
13.	Quality inspection. Risk Management	2		
14.	Engineering Economics. Risks, Uncertainty in the Analysis	2		

Bibliography

- 1. ASM Handbook: Vol. 16: Machining, ISBN 0-87170-377-7, ASM Int., 1993.
- 2. Hwaiyu Geng, Manufacturing Engineering Handbook, 2nd Edition, 2016, ISBN: 978-0-07-183978-5.
- 3. Schey, John A., "Introduction to Manufacturing Processes", McGraw Hill, 2nd Edition, 1987.
- 4. Groover M.P., "Principles of Modern Manufacturing-SI Version", John Wiley, 4th Edition, 2011.
- 5. Tlusty, G., "Manufacturing Process and Equipment", Prentice Hall Inc., 2000.
- 6. Mielnik, E. M., "Metal Working Science Engineering", McGraw Hill, 1991.

8.2. <mark>Se</mark> l	minars /Laboratory/Project	Number of hours	Teaching methods	Notes
1.	Design of experiments. ANOVA based experimental designs	2		Preparing
2.	Design for Six Sigma	2		Welding
3.	Injection Mold fabrication. Additive manufacturing	2	Practical	Procedure
4.	Metal cutting, turning and milling processes	2	training	Specifications
5.	Engineering economics. Risks and uncertainties	2		for each
6.	Failure Analysis in manufacturing processes	2		process
7.	Robotics and Machine Vision. Case study	2		
8.	Project. A full operational project for an industrial manufacturing process in collaboration with a partner company. The project will comprise the part design, essential manufacturing processes, the technology investments and process planning.	14	Project study	

Bibliography

- 1. ASM Handbook: Vol. 16: Machining, ISBN 0-87170-377-7, ASM Int., 1993.
- 2. Hwaiyu Geng, Manufacturing Engineering Handbook, 2nd Edition, 2016, ISBN: 978-0-07-183978-5.
- 3. Schey, John A., "Introduction to Manufacturing Processes", McGraw Hill, 2nd Edition, 1987.
- 4. Groover M.P., "Principles of Modern Manufacturing-SI Version", John Wiley, 4th Edition, 2011.
- 5. Tlusty, G., "Manufacturing Process and Equipment", Prentice Hall Inc., 2000.
- 6. Mielnik, E. M., "Metal Working Science Engineering", McGraw Hill, 1991.
- 7. Kalpakjian, Schmid, Manufacturing Processes for Engineering Materials, 5th Ed., Pearson Education, ISBN No. 0-13-227271-7.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course assure the students qualification in manufacturing engineering by learning essential principles for design and operations considerations, safety, environment issues, maintenance, economy and best practices for planning, implementing and controlling operational processes. The Manufacturing Engineering course is specifically designed to provide technical knowledge for personnel who are responsible for the planning, designing, implementation, and management of manufacturing processes, but also for decision makers who are responsible for strategic decisions regarding technology investments and capacity planning.

10. Evaluation

Activity type	10.1 Accossment criteria	10.2 Assessment methods	10.3 Weight in the		
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade		
10.4 Course	Quiz questions (100 points)	Oral & writing 2h	80%		
10.5 Seminars	Overall activity during the	Oral & writing	20%		
/Laboratory/Project	semester	Utal & writing	20%		
10.6 Minimum standard of performance					
Minimum 50 points obtained at course test and laboratory tests.					

Date of filling in:		Title Surname Name	Signature
20.04.2023	Lecturer	Dr.Ing. IWE Bodea Marius	MAN
	Teachers in charge of	Dr.Ing. Thalmayer Gyuri	
	application	Dr.Ing. Prică Călin Virgil	

Date of approval in the department 26.01.2023

Date of approval in the faculty 10.07.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	46.00

2. Data about the subject

2.1	Subject name				Quality engineering	
2.2	Course responsible/lecturer				Assoc.prof.Pop Mariana	
2.3	Teachers in charge of seminars				Assoc.prof.Pop Mariana	
2.4	2.4 Year of study 3 2.5 Semester 6			6	2.6 Assessment	С
2.7 9	2.7 Subject Formative category					DD
cate	category Optionality					DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laboratory		3.3 Project	
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	14	3.6 Laboratory		3.6 Project	
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	у						15
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field					4
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	s, po	ortfolios, essa	ys		10
(d) Tutoring										2
(e) Exams and tests						2				
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
	For the applications	
5.2	seminarului / laboratorului /	
	proiectului	

6. Specific competences

		To know how to appreciate the quality of a product;
_		To know how to organize the department for quality assurance in a company;
	s	To know the legislation in force regarding the quality of the products;
ona	nce	To know the legislation regarding the qualification and certification of the staff;
Professional	oete	After completing the discipline students will be able to:
rofe	competences	 establish the quality control procedure for a part or product.
<u>а</u>	ö	 to establish the control points on the production flow of the products.
		– to draw up a program for the certification of the personnel quality assurance staff.
	es	
SS	enc	
Cross	pet	
Ū	competences	
	C	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	 Identification, analysis of concepts, theories and specific methods for designing materials processing technologies Application of basic principles and methods for solving problems in the exploitation of materials processing technologies, in order to streamline technological flows
7.2	Specific objectives	 Appropriate use of standard criteria and methods for the analysis and evaluation of materials processing technologies and their implementation in accordance with the norms of quality, environment and labor protection Elaboration of professional projects with the use of principles and methods established in the field for the elaboration of materials processing technologies in accordance with the norms of quality, environment and labor protection.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Product quality concepts History, quality estimation methods, definitions, standards	2		
Theoretical bases of quality control Control methods, control plans, quality management, reliability analyzes, etc	2	Exposition, discussions	Video projector
Control of the design activity Stages of a product cycle, product design, technical- economic studies, project quality inspection,	2		

	2
Statistical quality control Control of product batches, control methods, theoretical	2
bases of statistical control, stability of the manufacturing	
process, statistical analysis of the manufacturing process.	
Implementation of the quality system according to the ISO	2
9000 standard	
Presentation of the series of ISO 9000 standards,	
implementation methods, internal quality audit, product	
traceability,	
Organizing activities to ensure product quality	2
Capability of manufacturing processes	2
Product quality control during use by beneficiaries	2
Economic analysis of quality costs, total quality manager,	2
product certification and accreditation of laboratories.	
Qualification of personnel according to EN287-1,2	2
(European / International Engineers, Inspectors,	
Operators)	
Qualification of product production procedures.	2
Certification of quality systems on the technological flow	2
of products.	
Certification of environmental management systems	2
according to ISO 14000	
Qualification of staff in ensuring product quality	2
Bibliography	

1. Rusu T., Quality management, Mediamira Publishing House 1997, Cluj-Napoca,, ISBN 973-95153-0-0.

2. Munteanu, R., Rusu, T. Introduction to Quality Engineering Mediamira Publishing House 2002, Cluj-Napoca ,, ISBN 973-8396-72-3.

3. Bolboaca, L., I., Bulgaru, M., - Quality Engineering, Applications, Alma Mater Publishing House, Cluj-Napoca, 2003, ISBN 973-9358-57-8

24 Rusu Tiberiu - Industrial Products Quality Management - Applications - UTCN Publishing House -1994 4. SR EN 729

5. DIN 18800

- 6. SR EN 287
- 7. ISO 14000
- 8. SR EN 288

8.2. Seminars /Laboratory/Project		Teaching methods	Notes
Methods for evaluating and comparing product quality	2	Exposition of	
Methods for evaluating and comparing product quality using non-quality indicators Methods and tools for processing numerical data on product quality.	2	the theoretical part and	Use of equipment

Quality control techniques and tools used for numerical	2	practical	Specific
data analysis - Control charts for variables.		execution.	technologi
Quality control techniques and tools used for numerical	2		es.
data analysis - Attribute control charts.			
Methods and tools for analysis, evaluation and	2		
improvement of product and process quality. Cause-effect			
diagram. Process diagram.			
Methods and tools for analysis, evaluation and	2	1	
improvement of product and process quality. Method 8D.			
Riblingraphy			

Bibliography

Rusu T., Quality management, Mediamira Publishing House 1997, Cluj-Napoca,, ISBN 973-95153-0-0.
 Munteanu, R., Rusu, T. Introduction to Quality Engineering Mediamira Publishing House 2002, Cluj-Napoca ,, ISBN 973-8396-72-3.

3. Bolboaca, L., I., Bulgaru, M., - Quality Engineering, Applications, Alma Mater Publishing House, Cluj-Napoca, 2003, ISBN 973-9358-57-8

24 Rusu Tiberiu - Industrial Products Quality Management - Applications - UTCN Publishing House -1994 4. SR EN 729

- 5. DIN 18800
- 6. SR EN 287
- 7. ISO 14000
- 8. SR EN 288

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within the quality assurance and control services and for the technological engineers.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	Solving a topic of theory synthesis and a case study.	Written test - evaluation time - 2 hours	75%		
10.5 Seminars /Laboratory/Project	Presentation of a paper on a given topic.	Exposure 0,5 hour	25%		
10.6 Minimum standard of performance Solving the case study and presenting the report					

Date of filling in:		Title Surname Name	Signature
24.04.2023	Lecturer	Assoc.prof. Mariana Pop	
	Teachers in charge of	Assoc.prof. Mariana Pop	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	47,00

2. Data about the subject

2.1	Subject name				Basics of Computer Aided Design			
2.2	Course respor	nsible,	/lecturer		Conf.dr.ing.Dan F	Conf.dr.ing.Dan Frunza Dan.Frunza@ipm.u		
2.3	Teachers in charge of seminars			Conf.dr.ing.Dan Frunza Dan.Frunza@ipm.u		tcluj.ro		
2.4 \	2.4 Year of study III 2.5 Semester 6		6	2.6 Assessment	С			
2.7 5	2.7 Subject Formative category			•			DD	
cate	ategory Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	0	3.3 Seminar		3.3 Laboratory	2	3.: Proj		
3.4 Total hours in the curriculum	28	of which	3.5 Course	0	3.6 Seminar		3.6 Laboratory	28		3.6 Project	
3.7 Individual study:											
(a) Manual, lecture materia	l and	notes, bib	liograph	y						2	0
(b) Supplementary study in the library, online and in the field								C)		
(c) Preparation for seminar	s/labo	ratory wo	rks, hon	newo	ork, repor	ts, pc	ortfolios, essa	ys		2	7
(d) Tutoring										C)
(e) Exams and tests								2	2		
(f) Other activities							C)			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 47											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

4. Pre-requisites (where appropriate)

4.1	Curriculum	Technical Drawing
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	80% Teams
5.2	seminar / lab / proj.	20% onsite

6. Specific competences

Professional	competences	Design of high-performance technologies for the processing of materials based on the concept of sustainable development and under conditions of high quality of the products obtained.
Cross	competences	 The use of expert knowledge for the design of high-performance technologies, under quality conditions of the products obtained Integrated use of the conceptual and methodological apparatus and a minimum data set for the design of high-performance material processing technologies

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Development of high-performance technologies specific to materials engineering using an innovative spectrum of qualitative methods.
7.2	Specific objectives	Definition of techniques for designing high-performance materials engineering technologies, environmentally sustainable.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Bibliography			
8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
o.z. Seminars / Laboratory/ roject	of hours	methods	Notes
1. Parametric design: Link part dimensions to equations	2		
and global variables.			
2. Advanced Design. Develop a flexible efficient design,	2	-	
then modify it while maintaining the design intend.			
3. 3D Sketching	2	-	
4. 3D Sketching with Planes.	2		
5. Moulded products Design, techniques for designing	2	Case study	
moulded products with multiple components.			
6. Mould design for plastic components	4]	
7. Dies design for close die forging	4	1	
8.Routing pipes and tubes.	2	1	
9.Sheet metal. Applying basic sheet metal commands such	2]	

as flanges and bends.			
10.Design Tables. Create variations of the same object by	2		
customizing parameters			
11.Toolbox. Add standard hardware components to an	2		
assembly			
12. Advanced Drawings. Create sections, details, exploded	2		
views dimensions, bills of materials, etc.			
Bibliography			
1. Solidworks help and tutorials			
 Groover, M.P., Zimmers, E.W., "CAD/CAM: Computer Aided Design and Manufacturing", Prentice- Hall International Editions, 1984 Tizzard, A., "An introduction to Computer-Aided Engineering", McGraw-Hill Book Company, 1994 			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course							
10.5 Seminars	Solve an app on computer	Practical examination on	100%				
/Laboratory/Project	Solve all app on computer	computer	100%				
10.6 Minimum standard of performance							

Date of filling in:		Title Surname Name	Signature
14.05.2023	Lecturer	Conf.dr.ing Dan Frunza	
	Teachers in charge of	Conf.dr.ing.Dan Frunza	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	48.00

2. Data about the subject

2 1	Subject name				Technological processes in materials engineering II (Plastic		
2.1	Subject name				deformation)		
2.2	2 Course responsible/lecturer				Assoc. prof. Pop Mariana		
2.3	Teachers in charge of seminars				Assoc.prof. Pop Mariana, Lecturer Sas Boca Monica		
2.4 Y	2.4 Year of study III		2.5 Semester	6	2.6 Assessment	Exam	
2.7 5	2.7 Subject		native category		·	DD	
category		Opti	onality			DI	

3. Estimated total time

3.1 Number of hours per week		of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Project	
3.4 Total hours in the curriculum		of which	35	28	3.6 Seminar		3.6 Laboratory	14	3.6 Project	
3.7 Individual study:			000.000							
(a) Manual, lecture materia	l and	notes, bib	liograph	у					1	.4
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field				4	4
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, repor	ts, po	ortfolios, essa	ys	8	8
(d) Tutoring									4	4
(e) Exams and tests										3
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
		Notions regarding: classification and properties of materials, iron-
		carbon diagram, basic notions regarding the main processes of
4.2	Competence	material processing; Notions of computer operation;
		Use of computer aided design software for making 2D and 3D
		geometric models.

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

		A feature of a standard state of the state o
		After completing the discipline students will be able to:
		-To know the basic elements of plastic deformation: the mechanism of plastic deformation, the
		laws of plastic deformation, the thermal regime of deformation, the technological bases of
		plastic deformation processes.
	6	- To know the technological parameters of the plastic deformation processes.
nal	competences	- To know the principles of elaboration of a processing technology by plastic deformation.
Professional	etei	- To know how to calculate the main technological parameters of plastic deformation operations.
ofe	dm	- To know the advantages of plastic deformation processes compared to other processing
đ	СО	processes.
		- To use a program for mathematical modelling and simulation of the main parameters of plastic
		deformation (stresses, strains, strain rates, temperature).
		- To know how to use the analytical methods for calculating the deformation force and pressure
		for the main plastic deformation operations.
		Application of the values and ethics of the engineering profession and responsible execution of
		professional tasks in the field of materials processing in conditions of limited autonomy and
	2 C	qualified assistance
		Carrying out activities and exercising the specific roles of teamwork, on different hierarchical
-	her	levels and the entire technological flow of processing
	כו נושא במוווף בובונכא	Promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others,
	2 22	diversity and multiculturalism and the continuous improvement of one's professional activity
		Objective self-assessment of the need for continuous professional training, in order to develop
		products with superior performance and to adapt to the dynamics of market requirements
		Effective use of multilingual skills and knowledge of information technology.

7. Discipline objectives (as results from the *key competences gained*)

		Development of competencies in the field of processing
7.1	General objective	processes by plastic deformation of materials in support of
		professional training.
		1. Assimilation of theoretical knowledge on: the principles of
		plastic deformation processing processes, their advantages
		compared to other processing processes, technological
		parameters of industrial plastic deformation processes, the
7.2	Specific objectives	principles of achieving a plastic deformation processing
		technology.
		2. Obtaining skills for: measuring the main technological
		parameters of plastic deformation processes (degree of
		deformation, deformation speed, temperature, deformation

	force); choosing the optimal processing technology for a given
	piece.
	3. Obtaining skills for the use of modeling and simulation
	software for determining the material flow and technological
	parameters of plastic deformation processes (deformation
	force, temperature, deformation energy, friction energy, etc.).

	Number	Teaching	
8.1. Lecture (syllabus)	of hours	methods	Notes
1 Notions of plastic deformation theory. Behavior of	2		
materials in plastic deformation;			
2. Deformation resistance; formability. Methods of	2		
determination;			
3. Semi-finished products used for plastic deformation;	2		
cutting semi-finished products for plastic deformation;			
Thermal regime of plastic deformation; Advantages and			
disadvantages of plastic deformation processes compared			
to other manufacturing processes.			
4. Equipment used for plastic deformation. Constructive	2		
principles, technical characteristics.			
5 Forging processes; basic operations for open die forging:	2		
upsetting, stretching, drilling, bending, twisting			
(technological elements, materials); Applications.			
6. Close die forging of metals and alloys. Advantages	2		
disadvantages. Principles, deformation conditions,			X 7' 1
materials, deformation parameters. Applications.		Prelegere, – conversatie	Video- proiector
7. Extrusion of parts and semi-finished products. Methods,	4	conversatie	protector
advantages disadvantages. Principles, deformation			
conditions, materials, deformation parameters.			
Applications.			
8. Drawing of wires, bars, tubes. Advantages	2		
disadvantages. Principles, deformation conditions,			
materials, deformation parameters. Applications.			
9. Semi-finished rolling processes, finished products;	2		
Principles, deformation conditions, materials, deformation			
parameters. Applications.			
10. Plastic sheet deformation processes. Deep-drawing	2		
and stamping; Principles, deformation conditions,			
materials. Applications.			
11. Operations after plastic deformation; Criteria for	2		
choosing the optimal technology for processing a piece.			
Applications.			
12. Non conventional plastic deformation processes.	2		

12 Accessts regarding the simulation of plastic deformation	2		
13. Aspects regarding the simulation of plastic deformation	2		
processes. Applications			
Bibliography			
Altan, T., s.a., Cold and hot forging, ASM International, 2005	,		
Dieter, G., Mechanical metallurgy, McGraw Hill, 1988, Hosford, W.,F., Caddell, R.,M., Metal forming, mechanics and	d metallurgy	Prentice Hall 1	993
Lange, K., Handbook of metal forming, Society of manufactu	υ,		
Laue, K., Stenger H., Extrusion, American Society for Metals			
Pop, M., Plastic deformatiom, Ed. Mega, 2014			
Schey, J., A., Tribology in Metalworking, American Society fo	-	84.	
Metals Handbook, Vol.14, Forming and Forging, Ninth Edition	on		
	Number	Teaching	
8.2. Seminars /Laboratory/Project	of hours	methods	Notes
1. Prezentarea lucrarilor	2		
2.Gaurirea cu dorn plin si tubular	2	-	
3.Matritarea cu bavura, Matritarea fara bavura: stabilirea	2	-	
fortei de matritare		Exposition,	
4. Studiul influentei parametrilor geometrici ai zonei de	2	discussions,	Experimental
deformare asupra fortei de extrudare		experimental tests,	installations, computers,
5. Trefilarea sarmelor: stabilirea fortei de trefilare	2	simulations	software
6.Stabilirea fortei de deformare la laminare	2	3111010113	Soltware
7. Aplicarea softului Forge in analiza procedeelor de	2	-	
deforamre plastica. Compararea rezultatelor obtinute prin			
simulare cu cele experimentale.			
Bibliography			
Neag, A., Pop, M., Plastic Deformation, Aplication, UTPress,	2009.		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who carry out their activity either in the design workshops / research laboratories or in the productive sections.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	On-going evaluation based on 2 tests and final evaluation (problems and questions from theory)	Final written evaluation - duration of evaluation 2 hours	75%
10.5 Laboratory	On-going evaluation based on discussions and self-evaluations and final evaluation by test.	Discussions, tests - duration of evaluation 1 hour	25%
10.6 Minimum standa	ard of performance		

Date of filling in:		Title Surname Name	Signature
10.05.2023	Lecturer	Assoc.prof.Pop Mariana	
	Teachers in charge of	Assoc.prof.Pop Mariana	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	49

2. Data about the subject

2.1	Subject name				Technological processes in materials eng	ineering III (Casting)	
2.2	Course respoi	aciblo	/locturor		Assoc. Prof. PhD.Eng. Adriana NEAG		
2.2	Course respon	ISIDIE	lecturei		adriana.neag@ipm.utcluj.ro		
2.3	Toochors in st	aaraa	of cominars		Assoc. Prof. PhD.Eng. Adriana NEAG		
2.5	Teachers in charge of seminars				adriana.neag@ipm.utcluj.ro		
2.4	Year of study	3	2.5 Semester	2	2.6 Assessment	E	
2.7 Subject Formative category		DD					
cate	gory	Opti	onality			DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	1	3.3 Project	
3.4 Total hours in the curriculum	42	of which	35	28	3.6 Seminar		3.6 Laboratory	14	3.6 Project	
3.7 Individual study:			Course		Seminar		Laboratory		Project	
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.1
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field				1	.1
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, repor	ts, pc	ortfolios, essa	ys	9	9
(d) Tutoring										
(e) Exams and tests										2
(f) Other activities										
3.8 Total hours of individual stud	y (sun	וm (3.7(a)	3.7(f)))	33					
3.9 Total hours per semester (3.4	+3.8)				117					
3.10 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	General knowledge in materials science.

5. Requirements (where appropriate)

5.1 For the course

	For the applications
5.2	seminarului / laboratorului /
	proiectului

6. Specific competences

		After	completing the course students will be able to:
a	ses	•	Describe the casting process;
sion	tenc	•	Explain the melting and the solidification process of metals;
ofes	Professional		Describe the metallurgical aspects;
Pro	con	•	Design pattern and mould;
		•	Understand the different casting process and their application.
Abilities to establish interpersonal		•	Abilities to establish interpersonal relationships, teamwork, respecting the norms of
6	competences		professional ethics and deontology, taking responsibility for the decisions made and
Cross	oete		potential risks;
0	duc	•	Ability to efficiently use technical information sources (Internet, specialized software
	ŭ		applications, databases, online courses, etc.).

7. Discipline objectives (as results from the key competences gained)

		Providing detailed information about the melting and casting
		processes.
		Imparting knowledge of various technological parameters used
7.1	Conoral objective	in metal casting.
/.1	General objective	Providing adequate knowledge of impurities removal and
		molten metal treatment.
		Describing methods for the quality assurance of components
		made by casting.
		Using basic scientific knowledge (from mathematics, physics,
	Specific objectives	chemistry, thermodynamics, etc.) to define and explain the
7.2		specific concepts of metal casting.
		Acquiring fundamental knowledge of metal casting in order to
		apply them at industrial level.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction: Casting as a process of Manufacturing. Basic	2		
materials used in foundry. Factors that determine the			
selection of a casting alloy.		Pre	
Fundamental concepts concerning alloy elaboration &	4	sent	
steps involved.		Presentation	
Structure and properties of metal dross. Gating systems	2	Ĕ	
and their characteristics; the effects of gates on aspiration;			
turbulence and dross trap;			

aw
Cărții
8N
0

2

2

2

2

Learning by

doing

Elimination methods and control of dissolved gases in

Mould design – details to take in consideration. Case

Measurement of fluidity; effects of various parameters on

foundry alloys.

Study of alloy shrinkage.

study.

fluidity.

Review of casting design; recent trends.	2				
Bibliography					
1.Zirbo, G., Dragoş, E., Rusu, T., Nagy, E., Sas, G., Soporan, V., Lehene, T., Topan, G – Îndrumător pentru					
proiectare tehnologii de turnătorie, Institutul Politehnic Cluj-Napoca, 1986.					

2.Albiță, Gh., Rădulescu, C., "Rețele de turnare", Editura tehnică, București, 1976.

3.Sofroni, L., Brabie, V., Bratu, C., Ștefănescu, F., "Aplicații și probleme la cursul Bazele teoretice ale turnării", Partea I, Centrul de multiplicat, IPB, București, 1983.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline's content is adapted and satisfies the requirements imposed by the market, being agreed by social partners, professional associations and employers in the field related to the bachelor program, thanks to the skills that the discipline develops, as long-term results of the educational process.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the					
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade					
10.4 Course		Oral examination	70%					
10.5 Seminars	Solving laboratory	Quiz	30%					
/Laboratory/Project	applications	Quiz	50%					
10.6 Minimum standard of performance								

Date of filling in:		Title Surname Name	Signature
13.04.2023	Lecturer	Assoc. Prof. PhD.Eng. Adriana NEAG	
	Teachers in charge of application	Assoc. Prof. PhD.Eng. Adriana NEAG	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	50,00

2. Data about the subject

2.1	Subject name				Heating equipments	5	
2.2	Course responsible/lecturer				Lecturer Tintelecan Marius-marius.tintelecan@ipm.utcluj.ro		
2.3	Teachers in ch	narge	of seminars		Lecturer Tintelecan Marius-marius.tintelecan@ipm.utcluj.ro		
2.4	2.4 Year of study		2.5 Semester	2	2.6 Assessment	verification	
2.7 9	2.7 Subject		native category				DS
category		Opti	onality				DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	2	3.3 Laboratory	1
3.4 Total hours in the curriculum	42	of which	3.5 Course	2	28	3.6 Laboratory	14
3.7 Individual study:							
(a) Manual, lecture material and notes, bibliography						18	
(b) Supplementary study in the library, online and in the field						5	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						7	
(d) Tutoring						-	
(e) Exams and tests							3
(f) Other activities							-
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 33							
3.9 Total hours per semester (3	.4+3.8)		75	5			
3.10 Number of credit points			3,0	0			

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	The presence at the laboratory will be compulsory

6. Specific competences

	•									
	To know the theoretical bases of the operation of thermotechnological equipments and installations.									
ial Ces	To know the destination, construction and equipment of the main types of metallurgical thermal									
sion	machinery and installations									
Professional	To evaluate and interpret the values of energy-technological and technical-economic indicators									
Prc	specific to control processes									
	To know the characteristics of refractory and thermal insulation materials and aspects regarding									
	energy efficiency and environmental protection.									
	After completing the discipline students will be able to:									
lces	- to establish / calculate the main data for the design / choice of thermotechnological									
eter	equipment and installations and to determine the thermal powers and the consumption									
đu	of fuel and energy and to interpret the data of an energy balance									
s co	- to use methods to control the combustion of fuels in energy-technological equipment									
Cross competences	- to choose the most technological and energetic equipment for the respective processing									
0	technologies.									

7. Discipline objectives (as results from the key competences gained)

		After completing the development of competencies in the field
7.1	7.1 General objective	of thermal equipment and installations, in support of
		professional training and processing.
		1. Acquiring the technical knowledge of the construction / use
7 2	Spacific objectives	of thermal equipment and installations.
1.2	7.2 Specific objectives	2. Applying this knowledge in the objective reality of the
		laboratory / experiment.

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.OverviewObject and importance of the course. The role of Heating equipments. Classification of metallurgical thermal aggregates. Energy-technological and technical-economic efficiency indicators.	2	PowerPoint presentation Interactive	
2. <u>Constructive elements of thermal aggregates</u> Foundation. Fireplace. The walls. Vaults. Auxiliary construction elements. Refractory materials used in the construction of metallurgical furnaces.	2	teaching mode Dialogue - conversation	Multimedia Blackboard
 Heat production in the workspace of metallurgical aggregates Usual fuels. Combustion of gaseous fuels. Combustion of liquid fuels. Combustion of solid fuels. 	2	professor - student	

4 Electric heating		
4. <u>Electric heating.</u>	2	
With resistors. By induction. With electric arc. With	2	
infrared radiation. With the electron beam. With plasma.		
5. <u>Resistors.</u>	2	
Construction materials. Fixing them. Their sizing	_	
6. <u>Inductors.</u>	2	
Construction of inductors. Their sizing.	E	
7. Electrodes. Infrared heating. Plasma heating.	2	
Electron beam heating.	2	
8. <u>The conversion of chemical energy into caloric</u>	2	
energy .The construction of flame heating systems.		PowerPoint
Flame stabilization.		presentation
Burners.		Interactive
Special burners.		teaching
9. <u>The injectors.</u>		mode
Constructive variants.	2	
10. Gas dynamics of aggregates and heating systems.		Dialogue -
Geometric overpressure. Variation of overpressure	-	conversation
in different technical variants of metallurgical	2	professor -
furnaces.		student
11. The calculation of pressure losses.		
Friction pressure losses. Local pressure losses.	2	
Total pressure losses on a flow path.		
12. <u>Chimney with natural draft.</u>		-
Its sizing.	2	
Artificial draft chimney.		
13. <u>Heat recovery of combustion products.</u>		-
Recuperators.	2	
14. Thermal balance of furnaces.		-
Thermal balance of flame furnaces. Thermal balance of	2	
electric ovens.	2	
Bibliography		
1. Biris,I- Agregate termice metalurgice.I.P.CN., 1989.		
 Biris, Pagregate termice metalulgice.i.r.cN., 1989. Biris, I., Boer, M., Negrea, G. Agregate termice metalul 		ãri de laborator UTC-N 1006
	-	
3. Deac Cristina, Biris,I., Boer, M., - Recuperatoare de ca		

2004, ISBN 973- 662-101-4.

4. Samoilã, C., Drugã, L., Stan, L. –Cuptoare si instalatii de încãlzire.E.D.P.,Bucuresti,1983.

5. Nicolae A., Predescu ,C. – Bazele teoretice ale agretelor termotehnologice din industria materialelor metalice. Ed. Printech, 2001, Bucuresti

8.2. La l	ooratory	Number of hours	Teaching methods	Notes
1.	Presentation of the laboratory, works and norms of security technique in work at the" Heating Equipments" laboratory	2		
2.	Temperature measurement methods. Measuring temperatures with heat-resistant, with thermoelectric pyrometers and radiation pyrometer.	2		
3.	Determination of the heat accumulated in the construction of the electric furnace with corindon bar resistors	2	Explication, conversation,	Blackboard, computer, specialized
4.	Determination of the temperature field in the walls for furnaces with continuous regime	2	- Case Study.	software
5.	The calculation of the chimney height with natural draft.	2		
6.	Checking the size of the chimney with natural draft.	2		
7.	Determining the thermal balance of a metallurgical furnace.	2		
Bibliog	raphy			

1. Biris, I- Agregate termice metalurgice. I.P.C.-N., 1989.

2. Biris, I., Boer, M., Negrea, G. Agregate termice metalurgice. Lucrãri de laborator. U.T.C.-N. 1996.

3. Deac Cristina, Biris,I., Boer, M., - Recuperatoare de cãldurã. Editura U.T.PRES, Cluj-Napoca, 2004, ISBN 973- 662-101-4.

4. Samoilã, C., Drugã, L., Stan, L. –Cuptoare si instalatii de încãlzire.E.D.P.,Bucuresti,1983.

Nicolae A., Predescu ,C. – Bazele teoretice ale agretelor termotehnologice din industria materialelor metalice. Ed. Printech, 2001, Bucuresti

15. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who carry out their activity either in the design workshops / research laboratories or in the productive sections.

16. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	On-going evaluation based on 2 tests and final evaluation (problems and questions from theory)	Final written evaluation - duration of evaluation 2 hours	75%
10.5 Laboratory	On-going evaluation based on discussions and self-evaluations and final	Discussions, tests - duration of evaluation 1 hour	25%

	evaluation by test.			
10.6 Minimum standard of performance: Minimum 50% of total activities.				

Date of filling in:		Title Surname Name	Signature
16.04.2023	Lecturer	Lecturer Tintelecan Marius	
	Teachers in charge of application	Lecturer Tintelecan Marius	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	51

2. Data about the subject

2.1	Subject name				Welding and related processes			
2.2	Course responsible/lecturer				Lecturer dr.eng. IWE Marius Bodea - mbodea@stm.utcluj.ro			
2.3	Teachers in charge of seminars				Lecturer dr.eng. IWE Marius Bodea			
2.4 Year of study 3 2.5 Semester 3		2.6 Assessment	Examination					
2.7 Subject Formative category				·	DS			
category Optionality					DI			

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Projec	0
3.4 Total hours in the curriculum	75	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Projec	0
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								10		
(b) Supplementary study in the library, online and in the field									10	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									10	
(d) Tutoring									1	
(e) Exams and tests								2		
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Materials Science and Mechanical Engineering			
4.2	Competence	Good knowlege in materials science and physics			

5. Requirements (where appropriate)

5.1	For the course	Faculty of Materials and Environmental Engineering
5.2	For the applications seminarului / laboratorului / proiectului	Welding Laboratory Room E10 – FMEE Faculty

6. Specific competences

_		•
		The graduates will be able to understand and use efficiently knowledge of:
		Welding terminology. The basics of arc welding processes with/without shielding gases.
la	Ses	Materials selection for welding applications - filler and auxiliary materials.
sion	tenc	The fundamental principles and theory of solid-state welding, resistance welding processes.
Professional	competences	Oxy-gas welding and related processes. The soldering and brazing processes.
Pro	con	Thermal spraying and thermal cutting processes.
		Quality control during manufacture. Welding imperfections and acceptance criteria.
		Non Destructive Testing Methods.
		Reading and interpreting technical drawings that refer to welding fabrication.
	ces	Selecting welding technologies and equipments required in welding fabrication, according to the
SS	tenc	materials used, dimensions, volume production, quality assurance etc.
Cross	competences	Choosing the right joint types, filler metals, welding parameters etc. accordingly to specific
	con	welding conditions: welded materials, welding position, mechanical resistance criteria etc.
		Undestanding the causes that can lead to welding imperfections.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Providing theoretical and practical skills required in the welding fabrication fields.
7.2	Specific objectives	Understanding the welding phenomena and related processes at an advanced level, the students being able to design and supervise the basic welding operations.

	8.1. Lecture (syllabus)	Number of	Teaching	Notes
	0.1. 2000000	hours	methods	Notes
1.	History of welding. Terms and definitions. Welding	2		
	classification. Joint types and classification.	2		
2.	Thermal sources for welding. Thermal Cycle in	2		
	Welding. Welding residual stress and distortion.	2		
3.	Arc welding fundamentals. Shielded metal arc welding	2		
	process SMAW	2	Interactive	
4.	Submerged Arc Welding – SAW	2	methods	Digital media
5.	Gas Shielded Arc Welding – GMAW (MIG/MAG)	2	using digital	content
6.	Gas Tungsten Arc Welding – GTAW (TIG)	2	equipments,	available and
7.	Plasma Arc Welding - PAW. Electroslag welding – ESW	2	video	e-learning
8.	Laser Welding – LBW, Electron Beam Welding – EBW	2	materials,	resources.
9.	Thermit Welding – TW	2	study cases	
10.	Oxyfuel gas welding. Soldering and brazing.	2		
11.	Oxygen cutting. Other cutting processes.	2		
12.	Thermal spraying processes. Welding repairs	2		
13.	Weldability and welding imperfections	2		
14.	Non Destructive Testing in welding applications	2]	

Bibliography

- 1. ASM Handbook: Vol. 6: Welding, Brazing, and Soldering, ISBN 0-87170-377-7(V.1), ASM Intern., 1993.
- 2. Sindo Kou, Welding Metallurgy, 2nd Ed., John Wiley & Son Inc., ISBN 0-471-43491-4, 2003.
- 3. Ibrahim Khan, Welding Science and Technology, New Age International Ltd., Publishers, ISBN 978-81-224-2621-5, 2008.
- 4. J. Nadzam, Gas Metal Arc Welding Guidelines, Lincoln Electric, 2005.
- 5. Edward R. Bohnart , TIG Handbook for GTAW Gas Tungsten Arc Welding, 2002, Miller Company.
- 6. KOBE STEEL Ltd, Weld Imperfections and Preventive Measures, 4th Ed.
- 7. SSAB Co, TECHSUPPORT No.47, Avoidance of discontinuities in the joint, <u>www.ssab.com</u>

8.2. <mark>Se</mark>	minars /Laboratory/Project	Number of hours	Teaching methods	Notes
1.	Welding safety measures. Welding symbolization	2		6
2.	Shielded metal arc welding process SMAW	2		Preparing
3.	Gas Shielded Arc Welding – GMAW (MIG/MAG)	2	Practical training	Welding Procedure Specifications
4.	Gas Tungsten Arc Welding – GTAW (TIG)	2		
5.	Oxyfuel gas welding and related processes	2	training	for each
6.	6. Solid state welding processes			process
7.	Non Destructive Testing and welding imperfections	2		p. 00000
Dibligg	ranhy			

Bibliography

- 1. ASM Handbook: Vol. 6: Welding, Brazing, and Soldering, ISBN 0-87170-377-7, ASM Int., 1993.
- 2. CWB Group Industry Services, Welding Procedure Guide, 2008.
- 3. ESAB, Repair and Maintenance Welding Handbook, 2nd Edition
- 4. Global Engineering Documents JEFFERSON'S WELDING ENCYCLOPEDIA ON CD-ROM, 2002.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The welding course content support the students qualification in order to perform in a large number of industries that use welding to manufacture their products, that in turn represent the driving force of a modern economy. They are largely responsible for building the infrastructure, capital goods, and commercial products that sustain a relatively high standard of living for billions of people across the world. Welding-related industries like the power plants industry, factories, bridges construction, vehicles, pipelines manufacturing a.o. are essential to generate, store, and distribute food, fuel, and products to a multitude of families and businesses.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the				
Activity type	10.1 Assessment criteria	10.2 Assessment methous	final grade				
10.4 CourseQuiz questions (100 points)		Oral & writing 2h	80%				
10.5 Seminars	Overall activity during the	Oral & writing	20%				
/Laboratory/Project	semester		2076				
10.6 Minimum standard of performance							
Minimum 50 points obtained at course test and laboratory tests.							

Date of filling in:		Title Surname Name	Signature
	Lecturer	Dr.Ing. IWE Bodea Marius	MAST
Date of filling in: 20.04.2023	Teachers in charge of	Dr.Ing. IWE Bodea Marius	
	application		

Date of approval in the department 26.06.2023

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

Ass.prof.dr.eng. Mariana Pop

Head of department

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	52,10

2. Data about the subject

2.1	Subject name				Marketing				
2.2	Course respor	nsible,	/lecturer		Lecturer Denes-Pop Ioana				
2.3	Teachers in ch	n charge of seminars			Lecturer Denes-Pop Ioana				
2.4	2.4 Year of study		2.5 Semester	2	2.6 Assessment verification				
2.7 9	2.7 Subject Formative category					DC			
cate	category Optionality						DO		

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	1			
3.4 Total hours in the curriculum	28 of which 13		3.5 Course	14	3.6 Seminar	14			
3.7 Individual study:									
(a) Manual, lecture material and notes, bibliography									
(b) Supplementary study in the library, online and in the field									
(c) Preparation for semina	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
(d) Tutoring						-			
(e) Exams and tests						3			
(f) Other activities						-			
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 22									
3.9 Total hours per semester (3	.4+3.8)		50						
3.10 Number of credit points			2,0	C					

4. Pre-requisites (where appropriate)

4.1	Curriculum	it's not necessary
4.2	Competence	it's not necessary

5. Requirements (where appropriate)

		IN	SITU	/	ONLINE,	Teams	platform,	depending	on	the
5.1	For the course	epic	lemiol	ogic	al situatior	n and the	e decisions	of the Sena	te of	the
		Technical University of Cluj-Napoca.								

		The onsite scenario involves: Classroom, teaching aids (PC, video projector, blackboard), teaching materials. The teaching activities will take place cf. HSU 1226 / 10.09.2020. The teaching activities will take place in a problematic and heuristic spirit. Students will not attend lectures with their mobile phones open. Telephone conversations during the course will not be tolerated, nor will students leave the classroom to pick up personal phone calls. The online scenario assumes that each student has an account on the MS Teams platform in order to participate in aplice teaching.				
		the MS Teams platform in order to participate in online teaching activities (according to HSU 1226 / 10.09.2020).				
5.2	For the applications	 IN SITU / ONLINE, Teams platform, depending on the epidemiological situation and the decisions of the Senate of the Technical University of Cluj-Napoca. The onsite scenario involves: Seminar room, teaching aids (PC, video projector, blackboard), teaching materials. The teaching activities will take place cf. HSU 1226 / 10.09.2020. Students will not attend lectures with their mobile phones open. Telephone conversations during the course will not be tolerated, nor will students leave the classroom to pick up personal phone calls. The online scenario involves using the MSTeams platform. The deadline for teaching homework is set by the application holder in agreement with the students. Requests for its postponement will only be accepted on well-founded grounds. 				

-		
Professional	competence	Acquiring basic and specialized knowledge on marketing and industrial markets. To analyse the marketing mix of a company and to take the necessary measures so that it can have a profitable activity.
	Ŭ	
Cross	competences	Knowledge of the basics of marketing and their connection with other sciences, including engineering. Ability to respect the principles of professional ethics specific to marketing.
	0	

7. Discipline objectives (as results from the key competences gained)

7.1 General objective		Developing skills in marketing, acquiring basic knowledge about		
		the marketing mix.		
		1. Knowledge and understanding		
		The assimilation of the knowledge regarding the		
7.2	Specific objectives	components of the environment in which the		
		companies carry out their activity.		
		Knowledge of market research tools;		

 Knowledge of marketing tools and strategies;
 Knowledge of the basic notions related to product,
price, promotion and distribution;
Thorough knowledge of one's own business by the
entrepreneur / manager, so that he is always up to date
with the position that his company has on the market,
thus identifying in due time the appropriate marketing
strategies; Understanding how the market works.
2. Explanation and interpretation:
• Explain the impact that a marketing plan can have on a company's market position.
• Explain the impact that a company's marketing mix can
have on it and take the necessary measures so that it
can have a profitable activity.
3. Instrumental – applications
• To be able to analyze the marketing mix of a company.
Identifying business opportunities and determining
appropriate ways to act through effective marketing
plans
• The ability to apply the specific action modalities to the
marketing activity for the economic profitability of an
industrial company
4Attitudinal:
• To understand the benefits of applying marketing
optics within a company.
• To appreciate correctly the information obtained, to
be able to analyze it so that in the end it can
contribute to the elaboration of an effective
marketing plan.
· ·

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
 Introduction to marketing. Marketing concepts. The objective and functions of marketing management. Specialization and marketing functions. 	2	PowerPoint presentation	INSITU/ONLINE
2. Marketing environment. Components and characteristics of the microenvironment and macroenvironment. Market definition and analysis. Market components.	2	Interactive teaching mode	Cursurile se vor desășura Insitu sau online cf. HSU
3. Marketing Information System. Marketing research. Methods, tools and techniques needed to gather information on the market. Components of a questionnaire and methods of its elaboration.	2	Dialogue - conversation professor - student	1226/10.09.20 20 Platforma MS Teams
4. Marketing mix. Product life cycle: Product policy and its	2	Student	

implementation, service marketing.	
5. Price and its influencing factors. Price classification,	2
ways to set them and price strategies used. Price policies.	Z
6. Product promotion and forms of promotion.	
Promotional techniques and policies. Elaboration of the	2
promotional budget.	
7. Distribution: concept, role, importance and functions.	
Types of distribution channels. Distribution policy -	2
Distribution strategies and factors pursued in the design of	Z
a distribution channel.	

Bibliography

- 1. Kotler, P., Armstrong, G., Saunders, J., Wong, V., Principiile marketingului, Editura Teora, București 1998.
- 2. Kotler, Ph., Managementul marketingului, Editura Teora, București, 1996.
- 3. Ştefănescu, P., Bazele marketingului, Bucureşti, 1994.
- 4. Baker, M. J., Marketing, Societatea Ştiinţă şi Tehnică, Bucureşti, 1997.
- 5. Denes-Pop, Ioana, Marketing, UTPRESS, Cluj-Napoca, 2018.

8.2. Seminar	Numbe r of hours	Teaching methods	Notes
1. The concept of marketing. Marketing orientation. Case studies;	2		
2. The company environment. Case studies. Company market: the Porsche case. Absolute and relative market share. Statistical link between the degree of urbanization and the average volume of sales per capita. Market segmentation - χ 2 test;	2		INSITU/ONLINE Seminariilese vor desfășura insitu cf. HSU
3. Marketing research. The survey. The case of the questionable questionnaire. Scaling consumer assessments (semantic differential). Likert's ladder. Fishbein-Rosenberg model;	2	Explication, conversation , Case Study.	1226/10.09.202 O sau <u>se pot</u> desfășura online (platforma MS Teams), în
 The marketing mix. The product. Launch of new products. Case studies; 	2		funcție de scenariu privind
5. The price. Case studies. Estimating the psychological price;	2		Sars-Cov 2, cf hotărârii Senatului UTCN
6. Promotion strategies used. Case studies	2		
7. Distribution. Case studies. Choosing the optimal distribution option.	2		

Bibliography

1. Kotler, P., Armstrong, G., Saunders, J., Wong, V., Principiile marketingului, Editura Teora, București 1998.

2. Kotler, Ph., Managementul marketingului, Editura Teora, Bucureşti, 1996.

3. Ştefănescu, P., Bazele marketingului, Bucureşti, 1994.

4. Denes-Pop, Ioana, Marketing, UTPRESS, Cluj-Napoca, 2018.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within the marketing services of a company but also for the future engineers in the field of materials science who must be up to date with the market requirements at a given moment.

The curriculum of the discipline is designed to facilitate the training of professional skills (specific to the profession, provided in the RNCIS documents) and transversal skills. The contents addressed include current issues (at national level) that are the subject of interest and / or debates conducted by professional associations / employers with concerns in the field of environmental protection and engineering. They also cover fundamental topics of the discipline that ensure students' familiarity with the specific problems of the discipline. (concept, theories, ideas, critical analysis).

10 Evaluation			10.3 Weight in the
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade
10.4 Course	Discipline-specific criteria (correct definition of the notions presented, critical discussion of the topics addressed, etc.) General evaluation criteria (completeness and correctness of knowledge, logical coherence, fluency in expression, strength of argument)	Written examination consisting of a grid test consisting of questions covering the whole subject 25%). Also, separately, if necessary, students will answer during the semester, in writing, questions related to the course support (25%). If the exam will consist only of the grid test it will represent 50% of the grade from the exam.	50%
10.5 Seminar	Acquiring the knowledge presented at the seminar / Making reports related to the seminar topics discussed. Attendance at the seminar	The written exam completes the grid test which assesses the knowledge assimilated through the course and consists of questions that cover the entire subject covered in the seminar (25%). Also, separately, if necessary, students will answer during the semester, in writing, questions related to the seminar support (21%). If the exam consists only of the grid test, it will represent 46% of	50%

10 Evaluation

		the grade related to the			
		seminar. Attendance at the			
		seminar (4%). Also, there is			
	the possibility to appreciate				
		the way to deepen the subject			
		by making a paper to cover			
		the topic of the seminar.			
10.6 Minimum standa	ard of performance				
Knowledge of the ba	asic concepts of entrepreneu	arship. Condition for obtaining cr	redits: N \geq 5, E \geq 5;		
S \geq 5, where: N = 0.50 E + 0.46 S + 0.04 P; E - exam grade, S - seminar grade, P - seminar					
attendance.					

Date of filling in:		Title Surname Name	Signature
16.03.2023	Lecturer	Lecturer Denes-Pop Ioana	
	Teachers in charge of	Lecturer Denes-Pop Ioana	
	application		

26.06.2023

Date of approval in the faculty

10.07.2023

Ass.prof.dr.eng. Mariana Pop

Head of department

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	52.2

2. Data about the subject

2.1	Subject name			Business strategy				
2.2	Course responsible/lecturer		s.l.dr.ing. Merie Violeta					
2.3	Teachers in ch	h charge of		s.l.dr.ing. Merie Violeta				
2.5	seminars							
2.4	2.4 Year of study 3 2.5 Seme			ster	2	2.6 Assessment	colloquium exam	
2.7 9	2.7 Subject Formative ca		native cate	egory			DC	
category Optionality						DO		

3. Estimated total time

3.1 Number of hours per week	2 of which		3.2 Course	1	3.3 Seminar	1	3.3 Laboratory	0	3.3 Project	0
3.4 Total hours in the curriculum		of which	3.5 Course	14	3.6 Seminar	14	3.6 Laboratory	0	3.6 Project	0
3.7 Individual study:	3.7 Individual study:									
(a) Manual, lecture material and notes, bibliography							1	.0		
(b) Supplementary study in the library, online and in the field								5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								5		
(d) Tutoring								1		
(e) Exams and tests	(e) Exams and tests								1	
(f) Other activities	(f) Other activities							(C	
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 22										
3.9 Total hours per semester (3.4+3.8) 50										
3.10 Number of credit points 2										

4. Pre-requisites (where appropriate)

4.1	Curriculum	It's not necessary
4.2	Competence	It's not necessary

5. Requirements (where appropriate)

5.1	For the course	Presence at Technical University of Cluj-Napoca
5.2	For the applications	Presence at seminars is mandatory.

	(laboratory)	
--	--------------	--

fa
fa
fa
fa
pany

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of competences in the management and strategy
7.1		of a company.
		Assimilation of knowledge referring to the strategy typology
7.2	Specific objectives	which can be applied to a company.
		Gaining skills for business strategy elaboration.

8.1. Lecture (syllabus)	Number of	Teaching	Notes
	hours	methods	
Concept, typology and the role of business strategy	2		
Elaboration and implementation of the company	2	Lecture	
general strategy			
Remodelling of managerial system of a company.	2	PowerPoint	
Evaluation of the results obtained by applying the strategy	2	presentation	
Market strategies. Strategies in the research-development	2		
field.		Interactive	
Investments strategies. Strategies for human resources	2	teaching mode	Multimedia
development.			
Strategies of quality. Strategies for company digitalisation.	2	Dialogue -	Blackboard
		conversation	
		professor -	
		student	

Bibliography

- [1]. Collective book, Business Book, Ed. DORL, 2003, ISBN: 1409341267
- [2]. David Campbell, Business Strategy, Ed. Macmillan Education UK, 2011.

8.2. Laboratory	Number	Teaching	Notes					
	of hours methods		Notes					
1. Strategies for technology improvement	2							
2. Joint-venture strategies.	2							
3. Export strategies	2	1	Blackboard, computer.					
4. Strategies in company- banking financial system	2	Explication,						
relation	2	conversation, Case Study.						
5. Strategies for external expansion of a company	2							
6. Control strategies	2							
7. Marketing strategies applied by leaders and small	2							
companies.								
Bibliography	Bibliography							
[1]. Collective book, Business Book, Ed. DORL, 2003, I								
[2]. David Campbell, Business Strategy, Ed. Macmillan I	Education U	K, 2011.						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences will be necessary to the employees which will have the activities in the marketing/management departments and to the engineers in the materials science field which must be up to date with the current strategies of a company at a moment.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Answers to the questions related to the subjects	Written test - 1	75%				
10.4 Course	presented at courses.	hours					
10.5	Solving problems similar with the ones presented at	Written test – 1	25%				
Laboratory	Laboratory seminars. hour						
10.6. Minimum standard of performance							
General exami	nation mark ≥ 5						

Date of filling in:		Title Surname Name	Signature
14.04.2023	Lecturer	s.l.dr.ing. Merie Violeta	
	Teachers in charge of application	s.l.dr.ing. Merie Violeta	

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	52.3

2. Data about the subject

2.1	Subject name	oject name			Ethics and academic integrity					
2.2	Course respor	se responsible/lecturer			Associate professor Traian Florin Marinca					
2.3	Teachers in ch seminars	achers in charge of minars				Associate professor Traian Florin Marinca				
2.4 \	2.4 Year of study 3 2.5 Semes				2	2.6 Assessment	colloquium exam			
2.7 \$	2.7 Subject Formative category					DC				
category Optionality							DO			

3. Estimated total time

3.1 Number of hours per week	2 of which		3.2 Course	1	3.3 Seminar	1	3.3 Laboratory	0	3.3 Project	0
3.4 Total hours in the curriculum		of which	3.5 Course	14	3.6 Seminar	14	3.6 Laboratory	0	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography							1	.0		
(b) Supplementary study in the library, online and in the field							!	5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								5		
(d) Tutoring										1
(e) Exams and tests										1
(f) Other activities							(0		
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 22										
3.9 Total hours per semester (3.4+3.8) 50										
3.10 Number of credit points 2										

4. Pre-requisites (where appropriate)

4.1	Curriculum	It's not necessary
4.2	Competence	It's not necessary

5. Requirements (where appropriate)

5.1	For the course	Presence at Technical University of Cluj-Napoca
5.2	For the applications	Presence at seminars is mandatory.

leu	competences	Theoretical knowledge. Familiarizing the student with the issues of designing and planning the scientific experiment, with the analysis and presentation of the experimental data and with the experimental methods of general interest in the study of materials. Acquiring methods and
ssic	etei	means of scientific documentation, ethics and academic integrity, anti-plagiarism legislation
Professional	dmo	Acquired skills: To know the problems of designing and planning the scientific experiment, the
۵		theory of measurement errors, the correct representation of the results, efficient
		documentation, writing scientific papers, theses, reports.
	es	Acquiring skills related to error calculation, correct choice of research means.
SS	enci	Transversal skills in the field of advanced materials and technologies for their production /
Cross	pet	processing / use, areas of convergence of several fields such as physics, chemistry, materials
Ŭ	competences	science, specific legislation.
	5	

7.	Discipline objectives	(as results from the	key competences gained)
----	------------------------------	----------------------	-------------------------

7.1	General objective	Learning the methodology of experimental research and issues of ethics and academic integrity
7.2	Specific objectives	 Knowledge of calculation of measurement errors, calculation with approximate numbers, measurement chains, error propagation Learning the method of documentation through books, articles, internet Knowledge of programming experiments, drawing up a research plan Knowledge of the principles of drafting / preparation of projects, reports, and scientific papers Learning ethics in research Knowledge and avoidance of various forms of plagiarism

8.1. Lecture (syllabus)	Number of	Teaching	Notes
8.1. Lecture (synabus)	hours	methods	Notes
1. Measurement errors, statistical hypotheses, criteria	2		
for eliminating gross errors, Calculation 1` with		Lecture	
approximate numbers,			
2. Smallest squares method, regression analysis,	2	PowerPoint	
representation of results, confidence intervals		presentation	
3. Notions of experimentation strategy.	2		Multimedia
Documentation. Choosing the type of experiment,		Interactive	Wattimedia
designing the experimental program.		teaching mode	Blackboard
4. Factorial experiments	2		Blackbourd

	2	Distant					
5. Writing project applications, reports and scientific	2	Dialogue -					
papers		conversation					
6. Good conduct in scientific research. Specific	2	professor -					
legislation		student					
7. Plagiarism, its identification and avoidance in	2						
scientific publications							
Bibliography							
 M. Tiron, Metoda celor mai mici patrate, EDP, Bucu A. Albu, I. Tăpălagă, L. Morar, E. Tăciulescu, Ba Cluj-Napoca, 1984 C. Oprean, M. Tâţu, Cercetarea experimentală şi pr 2007 A. Pisoschi, A. Ardelean, Introducere în metodolo Goldiş, Arad, 2005 	zele cercetă elucrarea dat	telor, Ed. Univ. I	.Blaga, Sibiu,				
 [5]. Elena Emilia Stefan, Etica si integritate academica, Editura ProUniversitaria Bucuresti, 2018 [6]. V. Pop, I. Chicinaş, N. Jumate, Fizica materialelor. Metode experimentale, Ed. Presa universitară clujeană, Cluj-Napoca, 2001 [7]. M. Ashby, How to write a paper, 6th Edition, Engineering Department, University of Cambridge, Cambridge, April 20052005 [8]. A. Buttler, Comment rédiger un rapport ou une publication scientifique ?, Université de Franche-Comté - Laboratoire de chrono-écologie -CNRS/UMR 6565, 2002 [9]. Laws: L 206/2004, L 1/2011, 1 319/2003 							
8.2. Laboratory	Number	Teaching	Notes				
	of hours	methods	Notes				
 Calculations with errors. Examples of determining the maximum relative error of a physical quantity inaccessible directly to the experiment 	2						
 Presentation of results, specific curves in materials engineering, tracing of experienced curves, regression analysis. Examples of experimental programming. 	2						
 Scientific databases. Examples of documentation using databases. How to read an article. 	2	Explication, conversation,	Blackboard, computer.				
4. Writing reports and scientific papers.	2	Case Study.	computer.				
 Discussion of copyright and anti-plagiarism legislation. Bad practices in scientific research 	2						
 Plagiarism. Forms of plagiarism. Anti-plagiarism legislation. Anti-plagiarism rules. Anti-plagiarism software. Similarity reports 	2						
7. Discussion of real examples of scientific plagiarism. 2							
Bibliography [1]. M. Tiron, Metoda celor mai mici patrate, EDP, Bucu [2]. C. Oprean, M. Tâțu, Cercetarea experimentală și pr		telor. Ed. Univ. I	Blaga, Sibiu,				

- [2]. C. Oprean, M. Tâțu, Cercetarea experimentală și prelucrarea datelor, Ed. Univ. L.Blaga, Sibiu, 2007
- [3]. A. Pisoschi, A. Ardelean, Introducere în metodologia cercetării științifice, Ed. Univ. Vasile Goldiș, Arad, 2005
- [4]. Elena Emilia Stefan, Etica si integritate academica, Editura ProUniversitaria Bucuresti, 2018

- [5]. V. Pop, I. Chicinaș, N. Jumate, Fizica materialelor. Metode experimentale, Ed. Presa universitară clujeană, Cluj-Napoca, 2001
- [6]. M. Ashby, How to write a paper, 6th Edition, Engineering Department, University of Cambridge, Cambridge, April 20052005
- [7]. A. Buttler, Comment rédiger un rapport ou une publication scientifique ?, Université de Franche-Comté - Laboratoire de chrono-écologie -CNRS/UMR 6565, 2002
- [8]. Legislatia din domeniu: L 206/2004, L 1/2011, 1 319/2003
- [9]. Site-urile: <u>http://www.cnatdcu.ro/</u>, <u>https://www.uefiscdi.ro/</u>, <u>http://www.research.gov.ro/</u>, <u>https://www.edu.ro/</u>, <u>http://ad-astra.ro/</u>, <u>http://cne.ancs.ro/</u>
- [10]. Databases: <u>http://apps.webofknowledge.com.am.e-nformation.ro</u>, <u>http://www.scientific.net/</u>, <u>http://www.sciencedirect.com/</u>, <u>http://integru.org/</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Companies that have testing / research laboratories, research institutes require that engineers know the research methodology through its components: documentation, experimentation, experimental data processing, writing technical and research reports

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Answers to the questions related to the subjects	Written test - 1	50%				
10.4 Course	presented at courses. Note C	hours	50%				
10.5	Presenting a material related to a topic presented at		50%				
Laboratory	atory courses. Note S						
10.6. Minimum standard of performance							
General exami	General examination mark N, N \geq 5, N=0,5C+0,5S						

Date of filling in:		Title Surname Name	Signature
18.04.2023	Lecturer	Associate professor Traian Florin Marinca	
	Teachers in charge of application	Associate professor Traian Florin Marinca	

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	53

2. Data about the subject

2.1	Subject name			Practical Activity II						
2.2	Course respor	responsible/lecturer			Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj.ro					
2.3	Teachers in ch seminars	hers in charge of nars			Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj					
2.4 ^v	Year of study	2	2.5 Seme	ester	2	2.6 Assessment	V			
2.7 \$	2.7 Subject Formative categor							DS		
cate	category Optionality							DI		

3. Estimated total time

3.1 Number of hours per week	0	of which	3.2 Course	0	3.3 Seminar	0	3.3 Laboratory	0	3.3 Project	0
3.4 Total hours in the curriculum	90	of which	3.5 Course	0	3.6 Seminar	0	3.6 Laboratory	0	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								1	.0	
(b) Supplementary study in the library, online and in the field									(0
(c) Preparation for seminar	s/labo	oratory wo	orks, hon	newo	ork, report	is, po	ortfolios, essa	ys	(0
(d) Tutoring									(0
(e) Exams and tests									(0
(f) Other activities									(0
3.8 Total hours of individual stud	y (sum	nm (3.7(a)	3.7(f)))		10				·	
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points					4					

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	General engineering knowledges

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications	Practice agreement with companies.

	(laboratory)	
--	--------------	--

Professional Competences	-	Learning of a process/technological flux in production; Utilising the knowledges about the materials properties in the study of the behaviour of materials in technological flux – from the raw materials to the final products. Appreciation over the quality of the final products and materials and also of the process; Using the industrial apparatus/installations;
Cross competences	- - -	Teamwork; Deadlines; Tasks; Familiarisation with the product processes and socialisation in the industrial environment; Understanding the hierarchy in the enterprise/factory/company/etc

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Be familiar and understanding the technological processes, industrial production and industrial equipments
7.2	Specific objectives	Study of the material characteristics/materials quality over the technological flux; Knowing the operation mode of the apparatus/installation from a given technological flux;

8. Contents

At company/factory/enterprise choice.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills will be required for employees who will work as engineers in production and/or quality departments.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade	
10.4 Practical activity	The students will briefly present their activity in the company with the accent on the practical parts.	Oral tests/question and answers session (O)	50%	
10.5 Laboratory	The student will present a notebook where they will describe their activity in the company. Their activities	practice notebook (N)	30%	

	will be presented with a timetable.						
10.6. Minimum standard of performance							
$P \ge 5$, $O \ge 5$, $N \ge 5$, P (the general examination mark) = 0,5O+0,5N							

Date of filling in:		Title Surname Name	Signature
14.03.2023	Lecturer	Assoc.prof. Traian Florin MARINCA	
	Teachers in charge of application	Assoc.prof. Traian Florin MARINCA	

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

T.	Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	108.00

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Modern language V					
2.2	Course responsible/lecturer				-					
2.3	Teachers in cl	narge	of seminars		Conf. dr. Sanda Pădurețu – Lb. engleză Sanda.Paduretu@lang.utcluj.ro					
2.4	2.4 Year of study III 2.5 Semester I			Ι	2.6 Assessment	С	DC/DFac			
2.7 Subject Formative category: Modern language					·					
cate	gory	Optio	onality DC/DFa	С						

3. Estimated total time

Year	Name of the discipline	Nr.	Cours	Ар	plic	ati	Cours	Ар	plica	tio	Individ		
/		wee	е	(ons		е		ns		ual	_	t
Sem		ks									study	ΤA	Credit
			[ore/săpt.]			[ore/sem.]				TC	C		
				S	L	Ρ		S	L	Ρ			
Ι	Modern language	14	-	2	-	-	-	28	-	-	22	50	2

3.1	Number of hours per week	2	3.2	of which,	-	3.3	applicatio	2
				course:			ns:	
3.4	Total hours in the	50	3.5	of which,	-	3.6	applicatio	28
	curriculum			course:			ns:	
Indiv	/idual study							Ore
Manual, lecture material and notes, bibliography						7		
Supplementary study in the library, online and in the field						2		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						8		
Tutoring						2		
Exar	Exams and tests					3		
Other activities				-				
3.7	Total hours of individual stu	ıdy	22					-
3.8 Total hours per semester 28								

3.8	Total hours per semester	28
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Minimum level of knowledge of the modern language B1 / B2

	(cf. CEFR - Commor	European	Framework	of	Reference	for
	Languages)					

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Class attendance, individual study Rooms B 102, B 103 / M102, M 104 - onsite MS Teams Platform – online

6. Specific competences

	Application of grammar, format rules and conventions regarding the writing of technical documents in the foreign language
Professional competences	Elaboration, reformulation, summary and synthesis of texts in formal technical style
Cross competences	Ability for foreign language documentation, useful for academic and / or professional careers Oral and written communication skills in multicultural professional teams.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of linguistic and communicative skills in a
		foreign language in professional situations.
7.2	General objectives	Assimilation of the basic lexicon in the fields of interest and related of materials science and engineering. Effective use of language and communication skills in the foreign language.

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes	
	of hours	methods	Notes	
1. Jobs, people and organizations	2	Communicative	Online	
2. Work and jobs. Ways of working	2	and interactive	platform,	
3. Recruitment and selection. Skills and qualifications	2	strategies.	Interactive	
4. Pay and benefits. People and workplaces	2	Integrated	board, CD	
5. The career ladder	2	skills, flipped	Player,	
6. Managers, executives and directors	2	learning,	video	
		blended	projector	

		learning		
7. Business people and business leaders	2			
8. Organizations 1	2			
9. Organizations 2	2			
10. Business ethics	2			
11. Professional behaviour	2			
12. Social issues / Environmental issues	2			
13. Oral assessment	2			
14. Written assessment	2			
Bibliography				
Bill Mascull, Business Vocabulary in use, Cambridge University Press, 2010				
Glendinning, E. and Alison Pohl, Technology 1, OUP, 2008				
Aspects of English Grammar in Technical Contexts, U.T. Press, Cluj-Napoca, 2015				
Ibbotson, M., Cambridge English for Engineering, CUP, 2009.				

4. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Optimizing communication with the interlocutor / partner on the labor market

10. Evaluation

10.2							
10.Z	Assessment	10.3	Weight in the				
	methods		final grade				
	Written exam		30%				
	Oral exam		40%				
	Practical		30%				
	assessment						
	(seminar activity,						
	homework)						
10.4 Minimum standard of performance:							
The student is accepted at the final evaluation, if his/her contribution to the seminar topics is 80%.							
The grade is calculated if each component is correctly done at least 60%.							
	ner cor	methods Written exam Oral exam Practical assessment (seminar activity, homework)	methods Written exam Oral exam Practical assessment (seminar activity, homework)				

Final grade: 0,3 Ts + 0,4 Po + 0,3 P

Date of filling in

20.04.2023

Professor in charge with the discipline Conf. dr. Sanda Pădureţu Teachers in charge of the seminar

Conf. dr. Sanda Pădurețu

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023