1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	18.00

2. Data about the subject

2.1	Subject name		Phys	Physical Metallurgy				
2.2	Course responsible/lecturer			Asso	Associate professor Traian Florin Marinca, marinca.traian@stm.utcluj.ro			
2.3	2.3 Teachers in charge of seminars			Asso	cia	te professor Traian F	lorin Marinca, marinca.traian@	stm.utcluj.ro
2.4	2.4 Year of study 2 2.5 Seme				1	2.6 Assessment	examination	
2.7 \$	2.7 Subject Formative cate			egory			DD	
cate	category Optionality							DI

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	2	3.3 Project	0
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	28	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					2	28
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field				1	2
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	s, pc	ortfolios, essa	ys	1	.4
(d) Tutoring										5
(e) Exams and tests									!	5
(f) Other activities							5			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 69										
3.9 Total hours per semester (3.4+3.8) 125										
3.10 Number of credit points 5										

4. Pre-requisites (where appropriate)

11	Curriculum	General knowledge in Physics and Materials Science and			
4.1	Curriculuiti	Engineering			
4.2	Competence	Good knowledge in physics and materials science and engineering			

5. Requirements (where appropriate)

		· · ·
5.1	For the course	Presence at Technical University of Cluj-Napoca at Materials

		Science and Engineering Department
5.2	For the applications	Presence at Technical University of Cluj-Napoca at Materials
5.2	(laboratory)	Science and Engineering Department laboratories

6. Specific competences

	The student, after attending the course and performing laboratory work will be able to:				
	- To know the formation and transformation of the structure of metallic materials during				
	metallurgical, mechanical processing operations and heat treatments;				
	- To know and interpret the metallurgical, physico-chemical and technological phenomena				
	specific to materials engineering;				
ial Ces	- To identify the typical metallographic constituents, according to the specific characteristics;				
sion	- To understand according to the microstructural characteristics the processing state of a				
Professional	metallic material;				
Prc	- To analyse and interpret the influence of thermal and mechanical processing on the structure				
	of metallic materials.				
	- To have the ability to interpret the microstructures for metallic materials and to identify the				
	structural features.				
	- To solve technical problems by identifying the structural deviations that appeared as a result of				
	the materials processing and establishing their cause.				
	- To acquire a specific engineering scientific language.				
s	- To improve their skills and abilities to operate with laboratory equipment.				
enc	- To know how to evaluate the data in relation to given references.				
pet	- To know how to analyse microstructural and structural data.				
Cross competences	- To know how to correlate the microstructural characteristics with the properties of the				
oss o	material.				
Cro	- To correlate the characteristics of a material at a certain stage of processing with the				
	technological flow of processing.				

7. Discipline objectives (as results from the key competences gained)

7 1	General objective	Development of competencies in the field of structural changes
/.1	General objective	of materials.
		- Assimilation of theoretical knowledge on the mechanisms of
	Specific objectives	formation and modification of the structure of an alloy by
7.2		applying heat treatments; equilibrium diagrams;
		- Obtaining skills for interpreting the metallographic structure of
		materials.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Equilibrium in metallic systems	3		
2. Bicomponent systems with three phases in	3	Lecture	
equilibrium. Phase diagrams			

3. Diffusion and autodiffusion mechanisms	3	PowerPoint
4. The theory of solid-state phase transformation	3	presentation
5. Polymorphic transformation	1	Multimedia
6. Precipitation from supersaturated solid solution	3	Interactive
7. Eutectoid transformation in ferrous and non-	2	teaching mode Blackboard
ferrous alloys		
8. Martensitic transformation	3	Dialogue -
9. Bainitic transformation	2	conversation
10. Ferrite-cementite mixtures transformation in	2	professor -
austenite		student
11. Massive transformation	1	
12. Order disorder transformation	2	
Bibliography		• • • • • • • • • • • • • • • • • • •

Bibliography

- [1]. Traian Florin Marinca course notes
- [2]. F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, SUA, 2008,
- [3]. R. E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering -Science, Process, Applications, Sixth Edition, Butterworth-Heinemann, Marea Britanie, 1999.
- [4]. T. B. Massalski, Binary Alloy Phase Diagrams Second Edition, ASM International, SUA, 1990.
- [5]. C.E. Campbell, Diffusivity and Mobility Data, ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing, SUA, 2009.
- [6]. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, Fourth Edition, Cengage Learning, SUA, 2009.
- [7]. W.D. Callister, Jr., D.G. Rethwisch, Materials Science and Engineering An Introduction - Eight Edition, John Wiley & Sons, SUA, 2010.
- [8]. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Springer-Science+Business Media, B.Y., Marea Britanie, 1992.
- [9]. G.F. Van der Voort, ASM Handbook, Metallography and Microstructures, Volumul 9, ASM International, SUA, 2004
- [10]. R.E. Smallman, A. H. W. Ngan, Modern Physical Metallurgy, Eighth Edition, Elsevier, SUA, 2014.
- [11]. F.C. Campbell, Phase Diagrams Understanding the Basics, ASM International, SUA, 2012.
- [12]. Van Vlack, Elements of Materials Science-An Introduction Text for Engineering Students, Second Edition, Addison-Wesley Publishing Company, SUA, 1966.

8.2. Laboratory Number of hours Teaching methods Notes 1. Study of typical metallographic constituents (from the laboratory's collection of metallographic samples) 4 4 4 2. The influence of heat treatment and cold plastic deformation on the structure of metallic materials with one or more structural constituents 3 4 4			<u> </u>	, ,	
1. Study of typical metallographic constituents (from the laboratory's collection of metallographic samples) 4 2. The influence of heat treatment and cold plastic deformation on the structure of metallic materials 3	8212	8.2. Laboratory		Teaching	Notes
the laboratory's collection of metallographic samples)2. The influence of heat treatment and cold plastic deformation on the structure of metallic materials3	0.2. La			methods	NOLES
samples)2. The influence of heat treatment and cold plastic deformation on the structure of metallic materials3	1.	Study of typical metallographic constituents (from	4		
2. The influence of heat treatment and cold plastic 3 deformation on the structure of metallic materials 3		the laboratory's collection of metallographic			
deformation on the structure of metallic materials		samples)			
	2.	The influence of heat treatment and cold plastic	3]	
with one or more structural constituents		deformation on the structure of metallic materials			
		with one or more structural constituents			
3. Phase diagrams - correlation of metallographic 3	3.	Phase diagrams - correlation of metallographic	3		

	constituents with phase diagrams.	_	-	
4.		2	-	
5.	Analysis and study of some structures resulting	2		
	from welding.			
6.	Study of polymorphic transformation structures	2		
	obtained by applying different cooling rates			
7.	Analysis of formation conditions and study of	2		
	structures obtained by precipitation from		Explication,	Blackboard,
	supersaturated solid solutions. Metastable		conversation,	computer,
	precipitates and equilibrium precipitates		Case Study.	specialized
8.	Bainite type microstructures in ferrous and non-	2		software
	ferrous alloys - forming mechanisms and			
	properties			
9.	The study of some structures obtained by	2		
	martensitic transformation of irreversible type -			
	formation mechanisms and properties.			
10.	. Study of structures obtained by reversible	2		
	martensitic transformation (shape memory alloys)			
	- formation mechanisms and properties.			
11.	. The study of order-disorder transformation	2		
	structures.			
12.	. Study of structures obtained through various	2		
	mechanisms in ceramic materials, biomaterials and			
	composite materials.			
Bibliog	raphy		• 	
[1]	. Traian Florin Marinca – course notes			
[2]	· · · · · · · · · · · · · · · · · · ·	•••	•	•
	Science, Process, Applications, Sixth Edition, Bu 1999.	itterworth-H	einemann, Marea	a Britanie,
[3]		Second Edit	tion ASM Intern	ational
[5]	· · · · · · · · · · · · · · · · · · ·	Second Lan		and onen,

- [3]. T. B. Massalski, Binary Alloy Phase Diagrams Second Edition, ASM International, SUA, 1990.
- [4]. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, Fourth Edition, Cengage Learning, SUA, 2009.
- [5]. W.D. Callister, Jr., D.G. Rethwisch, Materials Science and Engineering An Introduction – Eight Edition, John Wiley & Sons, SUA, 2010.
- [6]. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Springer-Science+Business Media, B.Y., Marea Britanie, 1992.
- [7]. G.F. Van der Voort, ASM Handbook, Metallography and Microstructures, Volumul 9, ASM International, SUA, 2004
- [8]. F.C. Campbell, Phase Diagrams Understanding the Basics, ASM International, SUA, 2012.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills will be required for employees who will work as technological engineers. The acquired competencies will be used by those who will carry out their activity within departments whose activity is the elaboration, characterization and testing of materials, as well as within the departments that are

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The exam consists of written test (C). The written test contains grid topics and broader topics that need to be developed. The written exam is carried out as follows: students enter the exam room after being invited to the room by the teacher and occupy the place indicated by the teacher, having on them only writing instruments and paper support on which to write; the number of writing instruments, exam sheets and auxiliaries (ruler, eraser and the like) is announced at the beginning of the exam by the teacher. Failure to comply with the requirements will result in removal from the exam. The exam subjects are either dictated by the teacher or a printed copy is handed to each student. The presence of a mobile phone or other electronic devices on students during the exam is considered copied.	Written test (C) - 2 hours	70%
10.5 Laboratory	At each laboratory the students receive a mark regarding their implication (I). The students receive notes on the laboratory tests (T) - $T=(T_1+T_n)/n$ (n - number of tests). The final laboratory mark (L) is L=0,5I+0,5T. Each mark should be at least 5.	Oral test (I) - continuous assessment. Tests (T) – 1 hour – theoretical and practical tests	30%
	n standard of performance		
$T \ge 5, I \ge 5, C$	\geq 5, E (the general examination mark) = 0,7 C+0,3L with	L=0,5I+0,5T	

Date of filling in:		Title Surname Name	Signature
14.05.2023			
	Lecturer	Assoc.prof. Traian Florin MARINCA	
	T		
	Teachers in charge of application	Assoc.prof. Traian Florin MARINCA	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	19.00

2. Data about the subject

2.1	Subject name				Mechanics		
2.2	Course responsible/lecturer				<i>Lecturer dr.eng. Claudiu SCHONSTEIN –</i> Claudiu.Schonstein@mep.utcluj.ro		
2.3	Teachers in charge of laboratory				<i>Lecturer dr.eng. Claudiu SCHONSTEIN –</i> Claudiu.Schonstein@mep.utcluj.ro		
2.4 Y	ear of study	tudy 2 2.5 Semester 1			2.6 Assessment		E
2.7 Subject Formative category				DD			
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	у					5	6
(b) Supplementary study in the library, online and in the field							1	.4		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								7		
(d) Tutoring										-
(e) Exams and tests									3	3
(f) Other activities										-
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 80							·			
3.9 Total hours per semester (3.4+3.8) 132										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematics notions
4.2	Competence	-

5. Requirements (where appropriate)

5.1	For the course	Attendance at the course is not mandatory, but is recommended.
5.2	For the applications	Attendance at the Laboratory is mandatory, for admittance at exam session.

6. Specific competences

Professional competences	 After completing the discipline, the students will be able to: calculate the parameters of mass geometry for rigid bodies and systems of bodies; establish and interpret the conditions of static equilibrium of the forces acting on mechanical bodies and systems; determine the parametric equations of motion, the distribution of velocities and accelerations
Pr	 for a material point and/or a rigid body; model a mechanical phenomenon under static, kinematic and dynamic aspect.
Cross competences	Continuous training and efficient use of information sources and communication resources (Internet, specialized software applications, databases, online courses)

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Learning and know how to apply the general principles and theorems that govern the equilibrium and movement of mechanical systems.
7.2	Specific objectives	 Acquiring knowledge regarding notions related to: reduction of forces; mass geometry; balance of mechanical systems; determination of trajectories; calculation of velocities and accelerations in case of point and rigid motion; > Understand the mechanic phenomena, principles and theorems of the dynamics of a material point and the systems; > Correct evaluation of parameters that characterizing the dynamic behavior of material point and the material point system.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Chapter 1 - Introduction to mechanics . Notions of vector calculus. Reduction of forces: polar moment, axial moment, variation of the polar moment. Torque. Moment of a force couple. Reduction torsor, central axis, minimal torsor.	4		
Chapter 2 - Mass geometry: Center of mass. Center of mass for a material point system. The mass center of a irregular body geometric shape. The mass center for a system of bodies.	2	Graphic tablet - Multimedia presentations.	
Chapter 3 - Statics of solid rigid body . Position and orientation parameters. Simple rotation matrices. Equilibrium equations of free rigid body. The equilibrium of the rigid body subjected to links (general study). The equilibrium of rigid body subjected to frictionless links. Statics of rigid body subjected to frictional links. Sliding friction. Rolling friction. Pivot friction.	4	Board presentations.	

Chapter 4. Kinematics of the material point. The	2		
trajectory of the material point. Acceleration of the			
material point. Velocity and acceleration components in			
different reference systems. (Cartesian, cylindrical (polar),			
intrinsic, spherical coordinates.			
Chapter 5. Kinematics of the rigid body. Parametric	4		
equations of motion of free rigid body. Definition of			
specific kinematic parameters: linear and angular velocity			
acceleration. Distribution law for velocity. Distribution law			
for accelerations. Study of particular movements for the			
rigid body.			
Chapter 6. Dynamics of a particle (fundamental notions	6		
and theorems). The linear momentum of a particle. The	0		
linear momentum of a system of points. The linear			
momentum theorem for a particle. Mass centre theorem.			
The angular momentum of the particle. The angular			
momentum for a system of material points. The angular			
momentum theorem for a particle. The angular			
momentum theorem for a system of material points. The			
angular momentum theorem in relation to the centre of			
mass. The mechanical work. Kinetic energy. The kinetic			
energy theorem for a particle. The kinetic energy theorem			
for a system of material points. Moment of inertia.			
Definition expressions of moments of inertia. Variation law			
for moments of inertia in relation to parallel axis.			
	4		
Chapter 7. Dynamics of the rigid body (fundamental nations and theorem). The linear momentum Mass	4		
notions and theorems). The linear momentum. Mass			
center theorem. The angular momentum. The angular			
momentum theorem. The mechanical work of the forces			
applied to the rigid. Mechanical power. Mechanical			
efficiency. Kinetic energy. Kinetic energy theorem.	-		
Chapter 8. Analytical mechanics. The torsor of inertial	2		
forces. The D`Alembert principle. Kineto-static method. The			
principle of virtual mechanical work. Lagrange's equations.			
Bibliography			
 Negrean, C. Schonstein, K. Kacso, A. Duca, Mecanică. Teorie 973-662-523-7, Cluj – Napoca, 2012. 	eৡi aplicaţii,	Editura UT PRESS, I	SBN 978-
• Negrean, I., Schonstein, C., s.a., Mechanics — Theory and A 978-606-737-061-4.	pplications,	Editura UT Press, 2	015, ISBN
• Bratu, P.P., Mecanica Teoretică- Editura IMPULS-Bucuresti-	2006		
 Itul, TP., Mecanica Cinematica și Dinamica, Ed. Mediamir 		ca 2004	
e itui, i. i., Metallica, cinematica și Dinamica, cu. Metilalili	a, ciuj-ivapot		

- Itul, T.-P., Mecanica. Statica, Editura Risoprint, Cluj-Napoca, 2000.
- Itul, T.-P., Haiduc, N., Mecanica, Editura UTPRESS, Cluj-Napoca, 2012.
- Ispas V., ş.a., Mecanică tehnică, Dinamica, Lito. IPCN, 1989.
- Ispas V., ş.a., Mecanica, Editura Dacia, Cluj-Napoca, 1997.

Ispas V., Deteşan O. A., Petrişor S. M., Mecanica. Statica, EDP, Bucureşti, 2007.

8.2. /Laboratory/	Number of hours	Teaching methods	Notes
1. Analytical and graphical reduction of coplanar	2	Presentation of	
forces system.		stands/experim	
2. Analytical and graphical determination of mass	2	ental work.	
center for a homogenous plate with irregular		combined with	

geometrical shape.		challenging
3. Establishing of sliding and rolling friction	2	students
coefficients .		through
4. Determination of velocities and accelerations in	2	questions. Then
the motion of a plane mechanism.		the students
5. Determination of gravitational acceleration by	2	perform
simple pendulum method.		measurements,
6. Determination of axial inertia moments by using	2	calculations /
rotation around a fixed axis.		graphs
7. Determination of the dynamic coefficient of		individually.
friction on the inclined plane.		
Bibliography		· · · ·
1. C. Schonstein , G. Fodor, A.F. Cristea, - Applied Mec process of publications.	hanics - Labo	oratory Works/Applications, in
2. Gabriel Fodor, Aurora Felicia Cristea, Mecanică apl UTPress. 2019.	icată : lucrăr	i de laborator , Cluj-Napoca,

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline is related to the field of "Mechanical Engineering" and provides fundamental technical knowledge useful in understanding the phenomena and processes in the mechanical field. Every engineer must have the necessary knowledge to perform calculations of: reduction of forces, determination of the center of gravity of a body, kinematics and dynamics of the particle and rigid body. The notions acquired in this discipline are useful in other disciplines from years II, III and IV (Strength of materials, Fluid mechanics, Machine parts, etc.).

The corroboration of the contents of the discipline with the expectations of the representatives of the epistemic community, of the professional associations and of the employers is achieved through regular discussions scheduled by the faculty with representatives of the employee.

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Exam with theory questions and problems, grouped by topics. Each subject being marked with a certain score.	Verification of knowledge (theory and applications) in writing for 3 hours.	75 %			
10.5 Laboratory	The laboratories are appreciated and marked with grades from 1-10 if they are handed in at the established deadlines.	Oral verification of knowledge.	25 %			
10.6 Minimum standard of performance						

10. Evaluation

Satisfactory problem solving and correct answers to questions. To pass the exam, each student must obtain a minimum grade of 5.

Date of filling in: 17.05.2023	Lecturer Teachers in charge of application	Title Surname Name Claudiu SCHONSTEIN Claudiu SCHONSTEIN	Signature
ate of approval in the c 26.06.2023	lepartment		department .dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Ass.prof.dr.eng. Mariana Pop

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	20.00

2. Data about the subject

2.1	Subject name				Materials Technology I		
2.2	Course responsible/lecturer				Lecturer Dr. Eng. Gabriel Batin		
2.3	Teachers in charge of seminars				Lecturer Dr. Eng. Gabriel Batin		
2.4 ۱	2.4 Year of study 2 2.5 Semester 3			2.6 Assessment	E	DD DI	
2.7 5	2.7 Subject Formative category				·		
category Optionality					Mandatory		

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	2	3.3 Project	0
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	28	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.8
(b) Supplementary study in the library, online and in the field							6			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.8			
(d) Tutoring							3			
(e) Exams and tests										3
(f) Other activities							0			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 44										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematics, Technical Drawing, Chemistry, Materials Science
		Elements of calculation: algebra and vectors;
		Notions of technical drawing: views, sections, cotation, symbols;
4.2	4.2 Competence	Elements of general inorganic chemistry;
		Elements of materials science: Fe-C diagram, alloys, materials
		symbolisation and classification.

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications seminarului / laboratorului / proiectului	All practical activities are mandatory.

6. Specific competences

		-
		To know from a structural point of view the materials used in industry; to know technical
		drawing; to understand the connection between the processing technology, the properties of
		the materials, the quality of the finished product and its cost price; evaluate the manufacturing
		technologies of the semi-finished products and relate them to the available application
		possibilities; to synthesize the requirements imposed on the elaborated materials and semi-
		finished products.
		After completing the discipline students will be able to:
		 Characterization of materials used in industry, from a mechanical point of view;
la	ses	Knowledge of the technological possibilities of elaborating some metals and the properties
Professional	sior	acquired by them;
ofes	competences	 Ability to design technologies for developing metals and alloys;
Pro	con	• Knowledge of the equipment used in the elaboration of metals and alloys as well as of the
		environmental protection equipment used in the elaboration of cast iron;
		• Knowledge of how the process of making metals and alloys determines their properties.
		 To know how to use the material characterization equipment;
		 Know how to schedule tests for det. mechanical characteristics of materials;
		 To know how to analyse the execution drawings or the parts used as a model;
		 To know how to establish the optimal manufacturing technology related to availability;
		 To know how to establish the succession of operations and technological phases;
		 To know how to interpret experimental results.
	es	Knowledge of software used in materials technology;
SS	enc	Knowledge of material properties;
Cross	competences	 Knowledge of the functionality of some equipment;
	mo	 Knowledge of the connection of the elaboration processes with the environment.
	0	

7. Discipline objectives (as results from the key competences gained)

7 1	Conoral objective	Development of skills in the field of materials development
7.1 General objective	technology in support of vocational training.	
		1. Assimilation of theoretical knowledge on the development of
		materials and its influence on the properties of developed
7.2	Specific objectives	alloys.
		2. Obtaining skills regarding the elaboration and
		characterization of materials.

8. Contents

8.1. Lecture (syllabus)	Numbe r of hours	Teaching methods	Notes
Raw materials for making metals and alloys. Ore	2		
preparation.			
Processes for the rough extraction of metals from ore. Raw	2		
metal refining processes.			
Development of foundry casting and refining cast iron.	2	-	
Cast iron properties and their destination.			
Principles of refining raw iron for refining.	2		
Steelmaking by conversion.	2		
Steelmaking in hearth furnaces.	2		
Deoxidation of steels. Deoxidation processes and	2		
properties of deoxidized steels			
Casting of steels in ingots. Continuous casting.	2	Exposition,	Videoprojector
Elaboration of aluminium. Ores. Development technology.	2	discussions	videoprojector
Installations. Properties of aluminium.			
Magnesium processing. Ores. Development technology.	2		
Installations. Properties of magnesium.			
Zinc production. Ores. Development technology.	2		
Installations. Properties of zinc.			
Copper production. Ores. Development technology.	2		
Installations. Properties of copper.			
Lead processing. Ores. Development technology.	2		
Installations. Properties of lead.			
Elaboration of titanium. Ores. Development technology.	2]	
Properties of titanium. Special metalworking processes.			
D'IL I' a start la			

Bibliography

1. Ashby M., Materials Selection in Mechanical Design, Second Edition, Butterworth-Heinemann, Oxford, 1999.

2. N. Vintilă – Tehnologia metalelor, Vol. I-II, Lit. Institutului Politehnic Cluj, 1978.

3. A. Palfalvi şi alţii – Tehnologia materialelor, E.D.P. Bucureşti, 1985.

4. M. Golumba – Tehnologia materialelor, Lit. Institutului Politennic Timişoara, 1981.

5. D.R. Mocanu – Încercările materialelor, Vol I-II, Editura Tehnica București, 1982.

8.2. Seminars /Laboratory/Project	Numb er of hours	Teaching methods	Notes
Notions regarding the properties of materials.	2		
Determination of linear contraction when solidifying	2		
alloys.			
Determination of volume contraction when solidifying	2	Exposition,	
alloys.		discussions,	

Forming into two frames.	2	applications	
Core formation.	2		
The influence of plastic deformation on some properties of	2		
materials.			
Determining the pulling force of some materials through	2		
the die.			
Determination of sheet deformation capacity.	2		
Tensile and compression test.	2		
Bending test.	2		
Impact bending test.	2		
Determination of Brinell and Vickers harness.	2]	
Determination of Rockwell hardness.	2]	
Hardness determination of plastic materials.	2]	

Bibliography

- 1. N. Vintilă Tehnologia metalelor, Vol. I-II, Lit. Institutului Politehnic Cluj, 1978.
- 2. A. Palfalvi şi alţii Tehnologia materialelor, E.D.P. Bucureşti, 1985.
- 3. M. Golumba Tehnologia materialelor, Lit. Institutului Politehnic Timişoara, 1981.
- 4. D.R. Mocanu Încercările materialelor, Vol I-II, Editura Tehnica București, 1982.
- L. Brânduşan, C. Pavel, R. Mureşan, Tehnologia Materialelor, Îndrumător pentru lucrări de laborator, Editura U.T. PRES 1999, Cluj-Napoca.

Programe:

- 1. Program de Selecție a Materialelor.
- 2. Program de prelucrare a datelor experimentale.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within the sections for elaboration and characterization of the materials.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	On-going evaluation based on tests and a final evaluation (questionnaire with 20 questions, recognition of equipment and development of a manufacturing technology in theory). During the exam, students are forbidden to carry a phone, smartwatch or other source of information than those	On-site	80%

	communicated in the last					
	course.					
	On-going evaluation					
10.5 Seminars	based on discussions and					
	by self-evaluation	On-site	20%			
/Laboratory/Project	together with a final					
	evaluation by test.					
10.6 Minimum standard of performance						
Promoting the applica	tion activity; Obtaining a grac	le of 5 based on the points accumu	lated in the final			
evaluation.						
Final grade: N = 0.8xE	+ 0.2xL					
E- examination, E						
The laboratory						
N≥5, E≥5, L≥5.						

Date of filling in:		Title Surname Name	Signature
20.06.2023	Lecturer	Lecturer Dr. Eng. Gabriel Batin	
	Teachers in Lecturer Dr. Eng. Gabriel Batin	Lecturer Dr. Eng. Gabriel Batin	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	Physical Chemistry

2. Data about the subject

2.1	Subject name	ubject name				Physical Chemistry		
2.2	2 Course responsible/lecturer				Assoc. prof. chem. Mihaela-Ligia Ungureşan			
					mihaela.unguresan@chem.utcluj.ro			
2.3	Teachers in charge of seminars				Lecturer chem. Liviu Bolunduț			
2.5	reachers in ci	eachers in charge of seminars			liviu.bolundut@chem.utcluj.ro			
2.4	Year of study	dy II 2.5 Semester 1			2.6 Assessment	Exam		
2.7 9	2.7 Subject Formative category			,			DD/DI	
cate	ategory Optionality						-	

3. Estimated total time

		1	1			1				
3.1 Number of hours per week	3	of which	3.2	2	3.3		3.3			
S.1 Number of nours per week	5	Course 2		Seminar	-	Laboratory	T	Project	-	
	40	- f . ! . .	3.5	20	3.6		3.6	1.4	3.6	
3.4 Total hours in the curriculum	42	of which	Course	28	Seminar	-	Laboratory	14	Project	-
3.7 Individual study:										
(a) Manual, lecture materia	al and	notes, bi	bliograp	hy						58
(b) Supplementary study in the library, online and in the field							24			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							16			
(d) Tutoring								10		
(e) Exams and tests							8			
(f) Other activities							-			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge of chemistry in high school	
4.2	Competence	Arithmetic, Algebra, Mathematical analysis; Physics.	

5. Requirements (where appropriate)

5.1	For the course	Blackboard, computer, video projector
-----	----------------	---------------------------------------

		The laboratory is endowed with:
		1. Apparatus, modern instruments and accessories: laboratory tools, glassware, stands with clips, supports for pipettes and micro pipettes,
		electronic balances, analytical balance, pipettes and micropipettes, manual
		and electronic devices for dispensing, magnetic stirrers, computers,
5.2	[2] For the applications	mechanical stirrer, Ph-meter with thermostat and electronic display, niche,
5.2	For the applications	gas bulbs, specific reactives, freezer.
		2. Interactive applications using the laboratory apparatus - experimental
		assemblies, computer assisted
		3. Computers with Internet connection, tables, chairs, video- projector,
		screen, blackboard
		Attendance at scheduled laboratory classes is compulsory.

6. Specific competences

	C2. To associate the knowledge, principles and methods of the technical sciences of the field with graphical
	representations in order to solve specific tasks.
	C2.1 To identify, define and describe the notions of physical chemistry (chemical thermodynamics, chemical
	kinetics, electrochemistry, surfaces, physico-chemical models) and methods for obtaining physico-chemical
	parameters, using learned laws and graphical representations.
ona	C2.2 The use of basic knowledge, principles and methods of technical sciences to explain concepts regarding
ete	the design and implementation of tasks and processes specific to materials engineering.
Professional	C2.3 The application of knowledge, principles and methods in the technical sciences of the field and their
Pr	association with graphical representations, in order to solve the specific tasks to the field of materials
	engineering.
	C2.4 Appropriate use the standard evaluation criteria and methods to assess the quality of the association of
	knowledge, principles and methods in the technical sciences of the field with graphical representations, for
	solving specific tasks.
S	
Cross competences	
Cross peten	
mp C	
S	

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Throughout the semester, this course will touch on many different aspects in the field of physical chemistry. This lecture course covers most topics of classical thermodynamics and its applications in the chemical sciences. It also introduces the basic concepts of quantum chemistry, statistical thermodynamics, and kinetics will be discussed. At the end of this course, you will have gained a thorough understanding and practical knowledge of thermodynamics. - a topic that is central to all chemistry as well as the natural and applied sciences. Upon successful completion of this course, students will be able:
		- to classify basic forms of matter;
		- to perform mathematical unit conversions;
		- to monitor the automated methods for the implementation of fixing the coefficients of chemical reactions;
		- to predict, depict and describe the gas behavior;
		- to determinate the direction of chemical reactions based on thermodynamic parameters;

		- to know the factors to affect the rate of the chemical reaction and of their mechanism;
		- to identify the equilibrium processes and the factor tohat affect the position of equilibrium;
		- to deepen the phenomena of electrolysis, electroplating, cathodic
		deposition, the phenomena of corrosion and corrosion protection.
		- To know how to use the apparatus and glassware from the chemistry
		laboratory, how to measure temperature, pressure, concentration, titre or
		the purity of some substances or solutions; how to analyse the
		experimental chemical data obtained. Understand the behaviour of matter
		and transformation between different forms of energy as they relate to
		expansion and compression of gases, phase transitions, and chemical
		reactions.
7.2	Specific objectives	The students will be able to:
		- analyse the chemical substances in a qualitatively and quantitatively
		mode;
		- to develop an experiment, to perform it and to make the interpretation
		of the results;
		- know how to interpret graphical results obtained as a result of the
		kinetic study of chemical reactions, of the thermodynamics of a chemical
		process.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Thermodynamics concepts General presentation, classification, thermodinamic system state; state parameters; chemical process.	2		
The gaseous state (law gases; kinetic molecular theory of gases; real gases; virial coefficients; Van der Waals equation).	2	-	
First law of thermodynamics and its consequences. Enthalpy - definition, enthalpy in chemical reaction systems, Robert-Mayer's equation, the calculation of the reaction enthalpy at different temperatures. Thermochemistry (calorimetry; Lavoisier-Laplace's law, Hess's law; applications)	2	Power point	
Enthalpy of phase transition, ionization enthalpy, enthalpy of fusion, enthalpy of reaction, the formation enthalpy, bond enthalpy, Born-Haber cycle). Second law of thermodynamics and its consequences Spontaneous and nonspontaneous processes, reaction entropy, variation of the reaction entropy with temperature.	2	presentations (ppt.) Microsoft Teams, presentations on graphics tablet,	
Chemical potential, Helmholtz free energy, free enthalpy (Gibbs free energy); Chemical equilibrium (masses action law; chemical equilibrium in homogeneous systems; relations between $K_{p,}$ K_c and K_x ; heterogeneous chemical equilibrium; dimensions characteristic to chemical equilibrium; applications).	2	discussions.	
The equilibrium of the phase transitions The equilibrium conditions between phases. The phases law. Phase equilibriums within mono-component systems. Clapeyron equation. The solid/liquid equilibrium. The liquid/gas equilibrium. The Clausius-Clapeyron equation. The solid/gase equilibrium. The phase diagram for water, CO ₂ , carbon, the stability of phases, Raoult law.	2		

		1	
Spectroscopy and molecular structure	2		
- Electrical properties of molecules - polarity and symmetry of			
molecules, dipole moment, Clausius - Mosotti equation.			
- Magnetic properties of molecules. Magnetochemistry.			
- Optical properties of molecules. Atomic and molecular refraction. The activity of atomic refractions. The Lorentz-Lorentz			
relationship. Applications to the determination of molecular			
structure and other applications in chemistry.			
 Molecular spectroscopy. Molecular absorption spectra. Rotation 			
spectra. Electronic spectra.			
- Combined diffusion spectrum; the elementary theory of the			
Raman spectrum.			
Surface chemistry and intermolecular forces: wetting, surface	2		
tension, surfactants, Laplace pressure, amphiphilic molecules,	Z		
surface films, surface excess, self-assembly and self-associating			
systems, Born energy.			
Chemical kinetics	2		
Rate of a reaction-factors influencing the rate of a reaction such as			
concentration, temperature, pressure, solvent, light and catalyst.			
Concentration dependence of rates, mathematical characteristics of			
simple chemical reactions - zero order, first order, second order,			
pseudo order, half life and mean life. Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy.			
Kinetic of complex reaction (successive, parallel, opposite, with	2		
preequilibrium). Reaction in chain; explosions.	2		
Catalysis: characteristics of catalysed reactions, classification of	2		
catalysis, characterization of catalysts, enzyme. Enzyme kinetics,	Z		
competitive and noncompetitive inhibition. Industrially important			
catalysts and processes such as oxidation, processing of petroleum			
and hydrocarbons, synthesis gas and related process.			
Electrochemistry (electrolytic dissociation; electrodes; potentials	2		
of electrodes; electrolysis; Butler-Volmer equation; Nernst			
equation, galvanic cells; accumulators, combustion and solar cells)			
The electromotive force measurements. Electrochemical sensors.	2		
Biosensors. Determination of pH; potentiometric titration,	Z		
· · · ·			
examples. Electrochemical methods for investigating the chemical			
reactions of materials. Polarography, rotating disk, cyclic			
voltammetry, electrochemical impedance.			
Corrosion and anticorrosion protection	2		
General terms, influencing factors in the process of corrosion;			
monitoring methods based on thermodynamic stability of the			
metal; corrosion protection methods. Electrochemical waste			
treatment processes.			
Bibliography			
From UTC-N library:			
 ML. Ungureşan, DM. Gligor, General Chemistry, Ed. UTPl 	RESS Chui	Napoca 2012	
 ML. Ungureşan, L. Jantschi, <i>Termodinamică şi. cinetică chi</i> 	-	-	ca 2005
 ML. Ongureşan, E. Jansen, <i>Termoundanted şi. cineted enil</i> G. Niac, O. Horovitz, <i>Chimie-Fizică</i>, vol. 1-2, Lito. Inst. Polite 			, 2005.
 G. Iviac, G. Horovitz, <i>Chime-Fizica</i>, vol. 1-2, Edo. hist. Fond P. W. Atkins, <i>Tratat de Chimie-Fizică</i>, Ed. Tehnică, București 	-		
From other libraries:	, 1990.		
1. L. Oniciu, L, Mureşan, <i>"Electrochimie aplicată"</i> , Ed. Presa Univ	ersitară Clu	jeană, 1998.	
2. I. G. Murgulescu, T. Oncescu, E. Segal, "Introducere în Chimia			Cataliză", și IV,
"Electrochimie", Ed. Științifică, București, 1981.			
	Number	Teaching	
8.2. Laboratory		-	Notes
	of hours	methods	

Presentation of the applications. Labor protection. The calculus of errors. Determining the constant of a calorimeter (KCl). Determining the hydration heat of copper sulphate The calculus of enthalpy, entropy and free enthalpy for a chemical reaction at different temperatures.	1	Presentation, experimental works in the laboratory, mathematical modeling and	Computer, soft, experimental
Thermal analysis.	1	numerical	apparatus
The kinetics of simple and complex reactions.	1	simulations of some physico-	
Adsorption at the liquid-solid interface.	1	chemical	
The kinetic theory of gases and the laws of the ideal gases.	1	processes	

Bibliography

From UTC-N library:

1. A. Mesaroş, L. Bolunduţ, M.-L. Ungureşan, *Experimente de Chimie Generală*, Ed. Galaxia Gutenberg, Colecția Tehne 5, ISBN: 978-973-141-228-3, 2010, pg. 197.

2. M.-L. Ungureșan, *Chimie Fizică. Experimente de Cinetică și Dinamică Moleculară*, Ed. Amici, Cluj-Napoca, 2003.

Virtual teaching materials (on-line):

3. http://mihaela.academicdirect.ro/free/Indrumator_laborator.pdf

Toate materialele (curs+lucrări laborator) sunt încărcate pe Microsoft Teams (fisiere)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences will be needed by the future engineers who will work within the departments for processing materials and technological engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade		
10.4 Course	The theoretical and practcal knowledge withint he course	Quiz test on-line (Microsoft Teams) - 16 questions, each one with 5 choices, one correct answer. The exam will take place with all the materials at the students' disposal. The duration of the exam: 30 minutes.	80%		
10.5 Laboratory	The experimental knowledge, mathematica modelling and numerical simulation of the phisico- chemical processes obtained within the laboratory.	Each received essay (Microsoft Teams or e-mail) is graded by the teacher and, at the end, the average will represent the grade for the laboratory.	20%		
10.6 Minimum standard of performance					
Grade exam ≥ Grade laborat	-				

Date of filling in: Title		Title Surname Name	Signature		
20.04.2023	20.04.2023 Lecturer Assoc. prof. chem. Mihaela-Ligia UNGUREȘAN		llogua.		
	Teachers in charge of application	Lecturer chem. Liviu BOLUNDUŢ	ZBol		
Date of approval in t	he department	Head of department			
26.06.2023		Ass.prof.dr.eng. Mariana Pop			
Date of approval in	the faculty	Dean			
10.07.202	3	Prof.dr.eng. Cătălin Po	opa		

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	22

2. Data about the subject

2.1	Subject name				Strength of Materia	als	
2.2	Course responsible/lecturer				Prof.dr.ing Mircea Cristian Dudescu		
2.3	Teachers in charge of seminars				Prof.dr.ing Mircea	Cristian Dudescu	
2.4 ۱	.4 Year of study II 2.5 Semester 3			3	2.6 Assessment	exam	
2.7 9	2.7 Subject Formative category					·	DD
cate	category DD DI Optionality						DI

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum 100		of which	3.5 Course	28	3.6 Seminar	14	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y						21
(b) Supplementary study in the library, online and in the field						7				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						7				
(d) Tutoring						4				
(e) Exams and tests						4				
(f) Other activities						1				
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 44										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Math, physics, mechanics (statics), technical drawing
4.2	Competence	Computer skills

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Presence is compulsory

6. Specific competences

	_	
		C1.1. Identifying the concepts, principles, basic theorems and mathematical methods, physics, chemistry,
		technical drawing, computer programming.
		C1.2. Using basic knowledge in the fundamental disciplines for theoretical explanation and interpretation
		of results, theorems, phenomena, or specific processes of industrial engineering.
		C1.3. Applying the theorems, principles and basic methods of fundamental disciplines, for basic
	SS	engineering calculations in design and operation of technical systems specific to industrial engineering,
one	nce	under qualified assistance
Professiona	competences	C2.1. Defining the principles and the methods of basic science industrial engineering field associated with
rofe	dm	graphics – technical drawing.
<u> </u>	8	C2.2. Using the knowledge from the basic engineering sciences to explain and interpret the theoretical
		and experimental results, the drawings and the specific industrial engineering phenomena and processes.
		C2.3. Applying the principles and methods from basic science of industrial engineering domain and
		associated with graphics - technical drawing, for strength calculations, sizing, establishing the technical
		conditions, establishing correspondence between features and functional role prescribed, and so on, in
		specific applications of industrial engineering under qualified help.
		Applying the values and the ethics of the profession of engineer and the responsible execution of the
ces	202	professional duties under limited autonomy and qualified assistance. Promoting the logical reasoning,
) ss ten	L L	convergent and divergent, the practical applicability and the assessment and self-evaluation decisions.
Cross	b	Objective self-evaluation of the need of continuous training for labor market insertion and the
Cross competences	5	accommodation to its dynamic requirements and for personal and professional development. Effective
		use of language skills and knowledge of information technology and communication.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	 To understand the basics of strength of materials, to know simple and composed loadings of the materials. To understand that the discipline it's a practical one, connected to the engineering calculations. To know how to interpret the results of different calculations about practical applications
7.2	Specific objectives	 To know how to solve strength calculations based on theoretical skills and engineering handbooks. To know how to reduce practical problems to theoretical calculation models used in strength of materials. To know how to interpret the calculation results and to propose engineering solutions to optimize it. To know how to measure experimentally displacement, strains and stresses in mechanically loaded components or structures.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction in Strength of Materials. Strain & Stresses.	2	Classical	:: <u>s/r</u>
Axially loaded members	2	methods,	site: <u>ites.go</u> /site/r
Statically indeterminate problems axially loaded	2	practical	Veb :://si com mato
Shear: internal forces, strains and stresses	2	elements,	W€ <u>https:/</u> <u>pgle.co</u> <u>ezma</u>

Calculus of detachable joints (screw joints, bolt joints, key	2	presentations,
joints, groove joints)		educational
Calculus of fixed joints (riveted joints, welded joints)	2	software for
Plane stress	2	mechanics of materials
Centroids and moments of inertia of plane areas.	2	(MDSolids),
Bending of beams. Shear force & bending moment	2	On-line
diagrams.		resources
Normal stresses in beams. Flexure formula (Navier).	2	
Shear stresses in beams. Shear stress formula (Jouravski).	2	
Equal strength beams. Composed beams.	2	
Deflection of beams.	2	
Torsion of circular bars. Torsion of non-prismatic bars.	2	

Bibliography

1. Dudescu, M.C., Lecture notes in Strength of Materials, available online

2. Dudescu, M.C., *Rezistența materialelor. Noțiuni fundamentale*. Editura U.T.Pres, Cluj-Napoca, 2013.

3. Păstrav I., *Rezistența materialelor și teoria elasticității*. Lito U.T.C.N., 1993.

4. Şomotecan, M., Hărdău, M., Bodea, S. *Rezistența materialelor*. Editura U.T.PRES, Cluj – Napoca, 2005

5. Gere, J., Goodno, B., *Mechanics of Materials*. *Brief Edition*, Cengage Learning, Toronto, 2012.

6. Philpot, T., Mechanics of Materials: An Integrated Learning System, Wiley, 2012.

7. Hibbeler, R.C, *Mechanics of Materials*, Pearson, (10th edition), 2016

		I_ ···	
8.2. Seminars /Laboratory	Number	Teaching	Notes
	of hours	methods	
S1. Bar with different diameters axially loaded	2		
L1. Mechanical tests: tensile, bending, torsion, impact.	2		
S2. Statically indeterminate structure axially loaded.	2		
L2. Determination of stress concentration factor for an	2		
axially loaded member by photoelasticity.		Lab works:	
S3. Calculus of welded / riveted joint	2	measurement	7
LE3. Measurement of shear force in a beam subjected to	2	s on	atclu
plane bending		experimental	ezm
S4. Centroids and moments of inertia of a composed area	2	stands	Web site: https://sites.google.com/site/rezmatcluj/
LE4. Measurement bending moment in a beam subjected	2		te: m/si
to plane bending		- Seminars:	Web site: <u>pgle.com/</u>
S5. Bending of beams. Shear force & bending moment	2	classical	W e
diagrams.		methods and	SS.BC
LE5. Stresses in beams measurement by strain gauge	2	educational	//site
technique.		software	tps:/
S6. Normal and shear stresses in beams. Design &	2	On-line	<u><u><u></u></u></u>
Verification		resources	
LE6. Study of bars with circular cross-section subjected to	2		
torsion			
S7. Torsion of bars having circular cross-section.	2		
LE7. Optical methods of experimental stress analysis	2		

Bibliography

1. Hardau, M., Dudescu, M.C. Suciu, M., Simion, M., Chiorean, C., Rad, I., Metode experimentale in *Rezistenta Materialelor. Indrumator de lucrari de laborator*. Editura U.T.Press, Cluj-Napoca, 2018 / available on-line

3. MDsolids – Educational Software for Mechanics of Materials, <u>www.mdsolids.com</u>

4. Structures – software pentru lucrările experimentale (TecQuipment, UK)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course contains theoretical aspects and applications from industrial environment that develops the student's skills to solve practical problems of engineering calculations based on analytical models and references in the field of mechanics of materials.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	Understanding of theory	Writing exam	1/3		
10.4 Course	presented at courses	writing exam	1/5		
10.5 Seminars	Ability to solve problems /	Writing over	2/3		
/Laboratory	Laboratory activity	Writing exam	2/3		
10.6 Minimum standard of performance					
N=0,33*C +0,33*S + 0,33*L. Requirements for passing: C≥5; S≥5; L≥5					

Date of filling in:		Title Surname Name	Signature
10.05.2023	Lecturer	Prof.dr.ing Mircea Cristian Dudescu	Indery
	Teachers in charge of Prof.dr.ing Mircea Cristian D	Prof.dr.ing Mircea Cristian Dudescu	Dudesny
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	23.00

2. Data about the subject

2.1	Subject name				Electrotechnics			
2.2	Course responsible/lecturer				Lecturer Dr. Eng. Andrei CECLAN			
2.3	Teachers in ch	Feachers in charge of seminars				Lecturer Dr. Eng. Andrei CECLAN		
2.4 ۱	2.4 Year of study 2 2.5 Semester 1		2.6 Assessment	colloquium	С			
2.7 9	2.7 Subject Formative category					DS		
cate	category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	У					1	13
(b) Supplementary study in the library, online and in the field							3			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	LO		
(d) Tutoring								3		
(e) Exams and tests							4			
(f) Other activities							-			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge related to physics and energy.
4.2	Competence	Basic physics.

5. Requirements (where appropriate)

5.1	For the course	Classroom equipped with blackboard and Video Projector - Muncii Blvd. Alternatively, ONLINE on TUCN's TEAMS platform.
5.2	For the applications –	Classroom equipped with blackboard and Video Projector – Muncii

laboratory.	Blvd., no. 128-130.
	Alternatively, ONLINE on TUCN's TEAMS platform.

6. Specific competences

Professional	competences	The ability to use specific electricity and energy analytics instrumentation and to manage on both energy use and generation on different energy users and energy carriers, closely related to materials science. The ability to understand the actual energy transition world is going through and the impact of materials science is playing in relation to new energy technologies.
Cross	competences	The ability to have an enhanced understanding of the electricity and energy impact on the materials science and materials technologies and their interaction with the energy sector. The ability to identify and foster opportunities and detail energy sustainability solutions.

		Evidenced based knowledge transfer and case study-based
		experiences regarding the Electrotechnics and energy transition
7.1	General objective	based on electricity as a carrier, so as to empower the
		participants to act in good knowledge of the energy impact on
		materials science.
7.2	Specific objectives	Integrative knowledge of the Electrotechnics and energy transition context, based on electricity as a carrier and use in the materials science. Knowledge of the Maxwell electromagnetic field theory and electric and magnetic circuits modeling.
		The ability to effectively use energy management tools and implement energy sustainability solutions.

7. Discipline objectives (as results from the key competences gained)

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Course 1 Inaugural introductive course – basics Electrotechnics from energy to engineering Energy transitions during human evolution Energy carriers – electricity the most flexible carrier Electrotechnics modelling using field and/or circuits	2	Presentation of concepts, theories, modeling and analysis. Debates on available for	
Course 2 The material world – substance and field The electric energy state of understanding Physical and mathematical instruments and modelling Practical applications	2	the students materials and contents. Sessions of questions and answers.	
Course 3	2	Case studies	

Electric charge and field in action		presentations.	
Electric charge		Use of online	
Electric current		interactive	
Practical applications		instruments –	
Course 4		mentimeter –	
Electromagnetism		use of power	
Forces in electric and magnetic field		point	
Electric and magnetic field		presentations	
Electromagnetic induction	2	and board	
Resistance, capacity and inductivity		writing	
Energy storage		Practical	
		examples of	
Practical applications Course 5		energy	
		analytics tools.	
Energy transformation			
Eddy currents			
Electrical transformer	2		
Classical electrical machines			
Special electrical machines			
Electricity balances			
Practical applications			
Course 6			
Energy flow through conductors			
Electrical circuits modelling	2		
Direct current electrical circuits			
Practical applications			
Course 7			
Energy flow through conductors			
Alternative current electrical circuits			
The interpretation of resistance, capacitor and inductivity	2		
significance in the electric circuits models			
Power definitions and balances			
Practical applications			
Course 8			
Power transfer			
Connexions in three phase circuits	2		
Symmetry and equilibrium in three phase circuits			
Resonance in the electric circuits			
Practical applications			
Course 9			
Transitory regime			
Commutation theorems	2		
R, L, C transitory models			
Practical applications			
Course 10	2		

		1	
Electromagnetic waves			
Wave guide			
Electromagnetic waves propagation	-		
Practical applications			
Course 11	-		
Electricity fields and interaction with other energy fields	-		
Electricity conversion	-		
Electrical installations	2		
Smart electric domains	-		
Thermotechnics and Electrotechnics			
Practical applications	-		
Course 12			
An approach to energy and environment	-		
Energy management concept, from opportunity to impact			
Energy generation, transportation, distribution and use	2		
Electricity impact on the environment			
Practical applications			
Course 13			
Innovative energy Horizon 2020 projects	-		
Concepts, demo pilots presentation	2		
Electricity role in the energy transition context			
Practical applications and business models	-		
Course 14			
Review	2		
Brief review of the presented topics.	-		
 Bibliography 1. R.V. Ciupa, "Bazele Electrotehnicii. Teorie şi aplicaţii", Vol 2006. 2. R.V. Ciupa, "Bazele Electrotehnicii.Teorie şi aplicaţii", Vol 2006. 3. D.O. Micu, R. Marschalko, "Electrostatica", Ed. Mediamira 	ol II. Ed. Casa	a Cărții de Știință	
 4. A. Timotin, V. Hortopan, "Lecții de Bazele Electrotehnicii" 5. E. Simion, T. Maghiar, "Electrotehnică", EDPB 1981. 6. D.D. Micu, L. Darabant s.a. "Teoria circuitelor electrice - p 7. R. Morar, A. Iuga, E. Man, V. Neamtu, L. Dascalescu. E Politehnic Cluj-Napoca, 1991. 	, EDPB 1970. robleme", UT Electrotehnica	Press Cluj-Napoo a si Masini Electi	rice. Institutul
 R. Morar, E. Man, V. Neamtu, L. Dascalescu, A. Iuga. E Institutul Politehnic Cluj-Napoca, 1987. A. Samuila. Masini si actionari electrice cu turatie variabili 10. R. Morar, Gh. Mindru, A. Iuga. Electrotehnica si M Politehnic Cluj-Napoca, 1978. R. Morar, L. Dascalescu, A. Iuga, V. Neamtu, E. Man 	a. Editura Me Iasini Electrio	diamira, Cluj-Nap ce. Lucrari pract	ooca, 1998. ice. Institutu
practice. Institutul Politehnic Cluj-Napoca, 1985.			
8.2. Laboratory	Number	Teaching	Notes
0.2. Lubor ator y	of hours	methods	110165

8.2. Laboratory	of hours	methods	Notes
Laboratory 1	2	Presentation	
Security and Safety measurements and rules	_	of laboratory	

Instruction		works.
Presentation of the laboratory works and schedules		Experiments
experiments		perform.
Practical applications – problem solving		
Laboratory 2		Interpretation
Electric field and voltage spatial distribution		of results.
Experiment consisting in the representation of the	2	Debates on
equipotential voltage and electric field lines		available for
Practical applications – problem solving		the students
Laboratory 3		materials and
Rotating magnetic field at work		contents.
Experiment consisting in the generation of a static and	2	Construct of
then rotating magnetic field distribution		Sessions of questions and
Practical applications – problem solving		answers.
Laboratory 4		Case studies
R, L, C circuit modelling		presentations.
Experiment consisting in the presentation of the basic		
electric circuit elements, their role and significance within		
different circuit configurations	2	Use of online
Resonance state in R, L, C circuits		interactive
Power balances		instruments –
Power factor correction and capacitor banks		mentimeter –
Practical applications – problem solving		use of power
Laboratory 5		point
Three phase electric circuits and transitory states		presentations
Experiments consisting in the two and three phase		and board
electrical supply	2	writing.
Experiment consisting in transitory states for different R, L,		
C circuit configurations		Practical
Practical applications – problem solving		examples of
Laboratory 6		energy
Electric mobility		analytics
Experimentation of electrical drives start, stop, protection,		tools.
speed control, braking and coupling	2	
Practical applications – problem solving		
Review of the laboratory works		
Bibliography		I

Bibliography

1. D.D. Micu, L. Darabant s.a. "Teoria circuitelor electrice - probleme", UT Press Cluj-Napoca, 2016.

2. R. Morar, E. Man, V. Neamtu, L. Dascalescu, A. Iuga. Electrotehnica si masini electrice. Probleme. Institutul Politehnic Cluj-Napoca, 1987.

3. R. Morar, Gh. Mindru, A. Iuga. Electrotehnica si Masini Electrice. Lucrari practice. Institutul Politehnic Cluj-Napoca, 1978.

4. R. Morar, L. Dascalescu, A. Iuga, V. Neamtu, E. Man. Electrotehnica si Masini Electrice. Lucrari practice. Institutul Politehnic Cluj-Napoca, 1985.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The preparation and periodical update of the course will take into account the existent curricula at international level, the consultation of relevant professional associations and authorities, the legal frame evolution and national and international implemented projects in Electrotechnics and energy transition context.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the					
Activity type	10.1 Assessment cittena	10.2 Assessment methods	final grade					
10.4 Course	Oral and written	Individual interviews and guiz	60%					
10.4 Course	evaluation		00%					
10.5 Laboratory	Laboratory test	Individual test completion	40%					
10.6 Minimum standa	rd of performance							
Participation at the c	ourses – minimum 80% of th	ne available time and full presence	e in the laboratory					
meetings as condition	s to enter to the colloquium.							
Evaluation grade (G); Course (C); Laboratory (L); Calculation formula of the grade G = $0.6 \times C + 0.4 \times L$								
Condition for obtaining credits: G > 5.0; where C > 5.0, L > 5.0.								

Date of filling in:		Title Surname Name	Signature
10.05.2023	Lecturer	Lecturer Dr. Eng. Andrei CECLAN	
	Teachers in charge of	Lecturer Dr. Eng. Andrei CECLAN	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	24

2. Data about the subject

2.1	Subject name				Electronics and automation			
2.2	Course responsible/lecturer				Prof. Dr. Eng. Abrudean Mihail Ioan,			
2.2	course respon	ISIDIE	lecturei		<u>Mihai.Abrudean@aut.utcluj.ro</u>			
2.3	2.3 Teachers in charge of seminars				Prof. Dr. Eng. Abrudean Mihail Ioan,			
2.5		laige	or seminars		Mihai.Abrudean@aut.utcluj.ro			
2.4	2.4 Year of study II 2.5 Semester 1				2.6 Assessment	С		
2.7 Subject Formative category			·		DD			
cate	category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum		of which	3.5 Course	14	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								7		
(b) Supplementary study in the library, online and in the field							!	5		
(c) Preparation for seminar	s/labc	oratory wo	orks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		5
(d) Tutoring										2
(e) Exams and tests										3
(f) Other activities							(C		
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 22										
3.9 Total hours per semester (3.4+3.8) 50										
3.10 Number of credit points 2										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Courses in Mathematics, Physics, Electrical Engineering
4.2	Competence	-

5. Requirements (where appropriate)

5.1 For the course	-
--------------------	---

6. Specific competences

	 Know the main aspects regarding the rectifier circuits, for pulses, modulation and
	demodulation, logic circuits, etc.
	• To know and interpret electronic circuits and installations with applications in the field of
	materials science and engineering;
	• C3.1 Identification, analysis of concepts, theories and specific methods for solving technical
	problems in the control of industrial materials processing systems
	• C3.2 Use of basic knowledge to explain and interpret the technical and economic conditions of
	the processes in the profile sectors
	 3.3 Application of basic principles and methods for solving problems in the optimal
	management of processes in the profile sectors
nal ces	• 3.4 Adequate use of standard evaluation criteria and methods for the analysis of the conditions
Professional	for optimal operation of technological processes in the professional sectors
ofes npe	• C3.5 Elaboration of professional projects with the use of principles and methods established in
Pro	the field, for the optimal control of the processes in the profile sectors
	After completing the discipline students will be able:
	• To know and be able to use the electronic measuring devices and control equipment in the
	laboratory;
	• To know how to represent the graphical characteristics of electronic devices and control
	structures
	• To identify and analyze concepts, theories and specific methods for designing materials
	processing technologies
	 To form practical skills in the execution of electronic assemblies
	• To draw up automation schemes;
	• To know how to interpret the graphic representations obtained after performing experiments.
	Applying the values and ethics of the engineering profession and responsible execution of
	professional tasks in conditions of limited autonomy and qualified assistance.
	Promoting logical, convergent and divergent reasoning, practical applicability, evaluation and
ses	self-evaluation, in decision making.
Cross competence	Carrying out activities and exercising the specific roles of teamwork, on different hierarchical
pet	levels.
com	Promoting the spirit of initiative, dialogue, cooperation, positive attitude, respect for others,
SSC (diversity and multiculturalism and the continuous improvement of one's activity.
Ü	The objective self-assessment of the need for professional training continues, in order to be
	inserted on the labor market and to adapt to the dynamics of its requirements and for personal
	and professional development.
	Effective use of multilingual skills and knowledge of information and communication technology

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge and deepening of knowledge in industrial electronics and automation of industrial processes.		
7.2	Specific objectives	 Acquiring knowledge about rectifier circuits, amplifiers, oscillators, integrated logic circuits, etc. Interpretation of electronic schemes and installations with applications in the field of engineering and environmental protection in industry. Elements of systems theory and process automation. 		

8. Contents

	8.1. Lecture (syllabus)		Teaching	Notes
o.i. Lecture (syllabus)		hours	methods	NOLES
1.	Single-phase and three-phase rectifier circuits.	2		
2.	Electronic amplifiers and oscillators	2		
3.	Integrated logic circuits with com	2	Exposure,	
4.	Voltage stabilizers and controlled rectifiers	2	Interactive	
5.	Continuous, sampled and random signals, transfer	2	teaching	
	function		methods,	
6.	Transfer functions algebra, ideal and real	2	blackboard	
	elements: P, I, D, PI, PD, PID		teaching.	
7.	Control structures for flow, level, pressure,	2		
	temperature, etc.			

Bibliography

1.M. Abrudean, Electronică industrială, Ed. UT Pres, Cluj-Napoca, 1998, ISBN 973-98380-4-9, 275 pag.

2. Cl.Feştilă, M. Abrudean, Eva Dulf, Electronică de putere în automatică, Mediamira, 2004.

3. T. Coloși, A. Aștilean, M. Abrudean, T. Leția, D. Bălan, I. Nașcu, Dispozitive și circuite electronice. Îndrumător de laborator, 1995.

4.M. Abrudean, Teoria sistemelor si reglare automata, Editura Mediamira, 1998

5. T. Coloși, L. Feștilă, Elemente de electronică industrială, Vol. I și II, Institutul Politehnic Cluj-Napoca, 1978, 580 pag.

6.J. Love, Procces Automation Handbook, A guide to theory and practice, Springer, 2007

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods Notes
1. Semiconductor diode	2	Exposure,
2. Single-phase rectifier	2	experimental
3. Bipolar junction transistor	2	work in the
4. Amplifiers, oscillators	2	laboratory,
5. Integrated circuits (gates, counters, information	2	mathematical
movement registers)		modeling and
6. Applications with transfer function, systems	2	numerical
identification		simulations

7. Stability of systems, control structures,	2				
applications					
Bibliography	Bibliography				
1. T. Coloși, A. Aștilean, M. Abrudean, T. Leția, D. Bălan, I. Nașcu, Dispozitive și circuite electronice.					
Îndrumător de laborator, 1995.					
2. Cl. Feștila, R. Both, Electronică - Îndrumător de lucrări, Ed. U.T. Press, Cluj Napoca, 2009.					
3. Cl. Feștilă, Echipamente electrice și electronice - Îndrumător de laborator, Cluj-Napoca, 1981.			81.		
4. **** The Internet					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with INCDTIM Cluj, ICIA Cluj-Napoca

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	Exam	Online multiple-choice test or written exam	80%		
10.5 Seminars /Laboratory/Project	Laboratory colloquium	On site or Online multiple- choice test	20%		
10.6 Minimum standard of performance					
Exam grade ≥ 5					
Laboratory grade ≥ 5					

Date of filling in:		Title Surname Name	Signature
18.04.2023	Lecturer	Prof. Dr. Eng. Abrudean Mihail Ioan	ATTE
	Teachers in charge of	Prof. Dr. Eng. Abrudean Mihail Ioan	Arep
	application		00-

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

Dean Prof.dr.eng. Cătălin Popa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	25.10

2. Data about the subject

2.1	Subject name			Special Mathematics			
2.2	Course responsible/lecturer				Lect. Dr. Daniela Marian		
2.3	Teachers in charge of seminars				Lect. Dr. Daniela Marian		
2.4 Y	2.4 Year of study I 2.5 Semester I		2.6 Assessment	Nota			
2.7 5	2.7 Subject Formative category		•	·	DF		
cate	category Optionality					DO	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar	2	3.3 Laboratory	-	3.3 Proje		-
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar	28	3.6 Laboratory		3.6 Proje		
3.7 Individual study:											
(a) Manual, lecture materia	l and	notes, bib	liograph	У						ç)
(b) Supplementary study in the library, online and in the field						8	3				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	0				
(d) Tutoring							(1)	3			
(e) Exams and tests						3	3				
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	N/A Electronic Course
5.2	For the applications seminarului / laboratorului /	Individual work

	proiectului	
--	-------------	--

6. Specific competences

Professional competences	 C1.1. Identifying the concepts, principles, basic theorems and mathematical methods, physics, chemistry, technical drawing, computer programming. C1.2. Using basic knowledge in the fundamental disciplines for theoretical explanation and interpretation of results, theorems, phenomena or specific processes of industrial engineering. C1.3. Applying the theorems, principles and basic methods of fundamental disciplines, for basic engineering calculations in design and operation of technical systems specific to industrial engineering, under qualified assistance C1.4. Appropriate use of standard assessment criteria and methods of fundamental disciplines for identification, modelling, analysis and qualitative and quantitative assessment of characteristics of the phenomena and parameters as well as the processing and interpretation of the results from specific industrial engineering projects and models based on identification, selection and use of principles, optimal methods and acknowledged solutions from the fundamental disciplines.
Cross competences	 CT1. Applying the values and the ethics of the profession of engineer and the responsible execution of the professional duties under limited autonomy and qualified assistance. Promoting the logical reasoning, convergent and divergent, the practical applicability and the assessment and self-evaluation decisions. CT3. Objective self-evaluation of the need of continuous training for labor market insertion and the accommodation to its dynamic requirements and for personal and professional development. Effective use of language skills and knowledge of information technology and communication.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	To obtain knowledge about the basic results of special mathematics and their application in other discipline					
7.2	Specific objectives	 To recognise the different types of differential equations and to find their solutions To solve systems of differential equations To solve first order partial differential equations To solve second order partial differential equations To know applications of special mathematics in different domains 					

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes
0.1. Lecture (Synabus)	hours	methods	Notes
Differential equations -the basic notions. The Cauchy's	1	Oral	
problem. Separable equations. Homogeneous equations		presentation,	
(in the sesnse of Euler)		notes on	
First order linear differential equations. Bernoulli	1	blackboard	
equations. Ricatti equations		and	

Clairaut equations. Lagrange equations. Equations with	1	multimedia
exact differentials. Integrating factor		presentatation
Linear differential equations order n, with variable	1	Students are
coefficients. Linear differential equations order n, with		asked and
constant coefficients		encouraged to
Euler equations. Systems of differential equations.	1	ask questions
Symmetrical systems		
First order partial differential equations	1	
Second order partial differential equations	1	

Bibliography

- 1. D. Marian, L. Blaga, Differential Equations. Theory and Problems, Ed. Mediamira, Cluj-Napoca, 2014.
- 2. N. Lungu, V. Dincuta, D. Inoan, A. Novac, M. Rus, Differential equations, Matrix Rom ,Bucuresti, 2009
- 3. R. Bronson, Differential equations, McGraw Hill, 2007
- 4. K. Armbruster, Introductory differential equations. From linearity to chaos, Addison-Wesley, 1996

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
First order linear differential equations. Bernoulli equations. Ricatti equations	2		
Clairaut equations. Lagrange equations. Equations with exact differentials. Integrating factor	2	Practical problems	
Linear differential equations order n, with variable coefficients. Linear differential equations order n, with constant coefficients	2		
Euler equations. Systems of differential equations. Symmetrical systems	2	Students are asked and	
First order partial differential equations	2	encouraged to	
Second order partial differential equations	2	ask questions	
The heat equations	1		
The wave equation	1		

Bibliography

- 5. D. Marian, L. Blaga, Differential Equations. Theory and Problems, Ed. Mediamira, Cluj-Napoca, 2014.
- 6. N. Lungu, V. Dincuta, D. Inoan, A. Novac, M. Rus, Differential equations, Matrix Rom ,Bucuresti, 2009
- 7. R. Bronson, Differential equations, McGraw Hill, 2007
- 8. K. Armbruster, Introductory differential equations. From linearity to chaos, Addison-Wesley, 1996
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

A good engineer must have solid knowledge of mathematics to apply in the domain in which he works because the professional community requires well prepared engineers.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	The ability to answer to theoretical questions and to solve practical problems	Written test (mark T)	T is 70%				
10.5 Seminars /Laboratory/Project	The activity during classes is appreciated	Questions on each class. Activity of seminar (mark AS) Homework (mark H)	AS is 20% H is 10%				
10.6 Minimum standard of performance N=0,7T+0,2AS+0,1H;							
The final credit can be	received only if each of the r	nark's components is fulfilled: N≥5;	; T≥5				

Date of filling in:		Title Surname Name	Signature
14.05.2023	Lecturer	Lect.Dr. Daniela Marian	
	Teachers in charge of	Lect.Dr. Daniela Marian	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	25.20

2. Data about the subject

2.1	Subject name			Numerical methods			
2.2	.2 Course responsible/lecturer			Lect. Dr. Daniela Marian			
2.3	2.3 Teachers in charge of seminars				Lect. Dr. Daniela Marian		
2.4 \	2.4 Year of study II 2.5 Semester I			I	2.6 Assessment	Nota	
2.7 5	2.7 Subject Formative category			•	·	DF	
category Optionality					DO		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar	2	3.3 Laboratory	-	3.3 Proje		-
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar	28	3.6 3.6 Laboratory Proje				
3.7 Individual study:	3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography						ç)				
(b) Supplementary study in the library, online and in the field						8	3				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					1	0					
(d) Tutoring						(1)	3				
(e) Exams and tests										3	3
(f) Other activities											
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 33											
3.9 Total hours per semester (3.4+3.8) 75											
3.10 Number of credit points 3											

4. Pre-requisites (where appropriate)

4.1	Curriculum	urriculum Basic knowledge of Differential and Integral Calculus			
4.2	4.2 Competence	Competences in elementary Differential and Integral Calculus:			
4.2	competence	derivatives, integrals, series.			

5. Requirements (where appropriate)

5.1	For the course	N/A Electronic Course
5.2	For the applications	Individual work

6. Specific competences

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	 CT1. Applying the values and the ethics of the profession of engineer and the responsible execution of the professional duties under limited autonomy and qualified assistance. Promoting the logical reasoning, convergent and divergent, the practical applicability and the assessment and self-evaluation decisions. CT3. Objective self-evaluation of the need of continuous training for labor market insertion and
Cross co	the accommodation to its dynamic requirements and for personal and professional development. Effective use of language skills and knowledge of information technology and communication.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential calculus.
7.2	Specific objectives	Use of the differential calculus in order to solve problems in engineering.

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes
0.1. Lecture (Synabus)	hours	methods	Notes
Elements of Error Theory. Floating Point Arithmetic.	2	Explanation	
Absolute and Relative Errors.		Explanation	
Numerical Methods in Linear Algebra. Special Types of	2	Demonstration	
Matrices. Norms of Vectors and Matrices. Eigenvalues and			
Eigenvectors. Error Estimation.		Collaboration	
Matrix Equations. Pivoting Elimination. Improved Solutions			
of Matrix Equations.		Interactive	
Partitioning Methods for Matrix Inversion. LU		activities	
Factorization. Doolittle's Factorization. Choleski's		Multimedia	
Factorization Method. Iterative Techniques for Solving		presentatatio	
Linear Systems. Jacobi Iterative Method. Gauss-Seidel		n Students	
Iterative Method.		are asked and	
Relaxation Methods. Characteristic Polynomial: Leverrier		encouraged	
Method. Characteristic Polynomial: Fadeev-Frame		to ask	
Method.		questions Collaboration	
Solutions of Nonlinear Equations. Method of Successive Approximation.	2	Interactive	

The Bisection Method. The Newton-Raphson Method. The		activities	
Secant Method.			
False Position Method. The Chebyshev Method. Numerical			
Solutions of Nonlinear Systems of Equations. Newton's			
Method for Systems of Nonlinear Equations. Steepest			
Descent Method.			
Elements of Interpolation Theory. Lagrange Interpolation.	2		
Divided Difference. Mean Value Properties in Lagrange			
Interpolation. Approximation by Interpolation. Hermite			
Interpolating Polynomial. Finite Differences. Interpolation			
of Multivariable Functions. Scattered Data Interpolation.			
Shepard's Method.			
Splines. B-splines.		_	
Elements of Numerical Integration. Richardson's	2		
Extrapolation.			
Numerical Quadrature. Error Bounds in the Quadrature			
Methods.			
Trapezoidal Rule. Richardson's Deferred Approach to the Limit.			
Romberg Integration. Newton-Cotes Formulas. Simpson's			
Rule. Gaussian Quadrature.			
Elements of Approximation Theory. Discrete Least	2	-	
Squares Approximation.	-		
Orthogonal Polynomials and Least Squares Approximation.			
Rational Function Approximation. Padé Approximation.			
Trigonometric Polynomial Approximation.			
Fast Fourier Transform. Bernstein Polynomial. Bézier			
Curves. <i>METAFONT</i> .			
Integration of Ordinary/Partial Differential Equations.	2	1	
The Euler Method.			
The Taylor Series Method. The Runge-Kutta Method. The			
Runge-Kutta Method for Systems of Equations. Integration			
of Partial Differential Equations			
Parabolic Partial-Differential Equations. Hyperbolic Partial			
Differential Equations. Elliptic Partial Differential			
Equations.			
Bibliography		•	• •

Bibliography

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
The applications follow the topics of the courses.	28	Practical problems Collaboration Interactive	

	activities	
Bibliography		

- 1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca, 2003. ISBN 973-9357-41-5.
- 2. Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Publishing House, Cluj-Napoca, 1992.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

A good engineer must have solid knowledge of mathematics to apply in the domain in which he works because the professional community requires well prepared engineers.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the			
receively type		10.27.0505511011 1101005	final grade			
	The ability to answer to					
10.4 Course	theoretical questions and	Murittan tast (mark T)	T is 70%			
	to solve practical	Written test (mark T)				
	problems					
10.5 Seminars	The activity during classes	Questions on each class. Activity	AS is 20%			
/Laboratory/Project	is appreciated	of seminar (mark AS)	H is 10%			
. ,		Homework (mark H)				
10.6 Minimum standard of performance N=0,7T+0,2AS+0,1H;						
The final credit can be received only if each of the mark's components is fulfilled: N≥5; T≥5						

Date of filling in:		Title Surname Name	Signature
14.04.2023	Lecturer	Lect.Dr. Daniela Marian	
	Teachers in	Lect.Dr. Daniela Marian	¢
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
		26.10 Modern language III English
1.8	Subject code	26.20 Modern language III French
		26.30 Modern language III German

2. Data about the subject

2.1	Subject name				English French German III				
2.2	Course responsible/lecturer				-				
2.3	Teachers in charge of seminars				Conf. dr. Sanda Pădurețu – Lb. engleză Sanda.Paduretu@lang.utcluj.ro				
2.4	ear of study	П	2.5 Semester	Ι	2.6 Assessment	С	DC/DO		
2.7 9	2.7 Subject Formative category Englis				sh, French, German la	anguage			
cate	category Optionality DC/DO								

3. Estimated total time

Year	Name of the discipline	Nr.	Cours	Ар	olic	ati	Cours	Ар	plica	tio	Individ		
/		wee	е	(ons		е		ns		ual	Ļ	t
Sem		ks									study	ΤA	Credit
			[ore	/săp	ot.]			[or	e/se	m.]		TC	C
				S	L	Ρ		S	L	Ρ			
Ι	Modern language	14	-	2	-	1	-	28	-	-	22	50	2

-								
3.1	Number of hours per week	2	3.2	of which,	-	3.3	applicatio	2
				course:			ns:	
3.4	Total hours in the	50	3.5	of which,	-	3.6	applicatio	28
	curriculum			course:			ns:	
Indiv	/idual study							Ore
Man	ual, lecture material and note	es, bib	liograp	hy				7
Supp	plementary study in the librar	y, onli	ine and	in the field				2
Prep	paration for seminars/laborate	ory wo	orks, ho	mework, report	s, pc	ortfolios,	essays	8
Tuto	ring							2
Exar	ns and tests							3
Other activities							-	
3.7 Total hours of individual study 22								
3.8	3.8 Total hours per semester 28							
3.9	Number of credit points		2					

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Minimum level of knowledge of the modern language B1 / B2
		(English) and A1 / A2 (French) (cf. CEFR - Common European
		Framework of Reference for Languages)

5. Requirements (where appropriate)

5.1	For the course	N/A				
5.2	For the applications	Class attendance, individual study				
		Rooms B 102, B 103 / M102, M 104 - onsite				
		MS Teams Platform – online				

6. Specific competences

	Application of grammar, format rules and conventions regarding the writing of technical documents in the foreign language
Professional competences	Elaboration, reformulation, summary and synthesis of texts in formal technical style
Cross competences	Ability for foreign language documentation, useful for academic and / or professional careers Oral and written communication skills in multicultural professional teams.

7. Discipline objectives (as results from the key competences gained)

-		
7.1	General objective	Development of linguistic and communicative skills in a
		foreign language in professional situations.
7.2	General objectives	Assimilation of the basic lexicon in the fields of interest and related of materials science and engineering. Effective use of language and communication skills in the foreign language.

3. Contents

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
	of hours	methods	Notes
1. Diagnostic and self-assessment test	2	Communicativ	Online
2. Academic life and professional career	2	e and	platform,
3. Materials technology. Recyclable materials	2	interactive	Interactive
4. Material resistance	2	strategies.	board, CD

5. Solid materials	2	Integrated	Player,
	2	skills, flipped	video
C. Chamies I second and shamies I as attices		learning,	projector
6. Chemical compounds and chemical reactions		blended	
		learning	
7. Corrosion	2		
8. Oxidic materials. Glass	2		
9. Ceramic materials	2		
10. Plastic materials	2		
11. Materials with special properties. Optical fiber	2		
12. Appliances	2		
13. Written test	2		
14. Oral assessment	2		
Bibliography		•	·

Glendinning, E. and Alison Pohl, Technology 1, OUP, 2008

Aspects of English Grammar in Technical Contexts, U.T. Press, Cluj-Napoca, 2015

Ibbotson, M., Cambridge English for Engineering, CUP, 2009.

Ioani, M., Le français de la communication scientifique et technique, Ed. Napoca Star, Cluj-Napoca, 2002.

Tescula, C., Le francais de la technique, UT.Press, Cluj-Napoca,2005.

File "Présenter en français" (disponibil la biblioteca facultății).

Paris, D.; Foltete Paris, B., Environnement.com, CLE International, Paris, 2009.

E. Cloose, Le français du monde du travail, Grenoble, PUG, 2009.

J. L. Penfornis Français.com, nouvelle édition, Paris, CLE International, 2012.

4. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Optimizing communication with the interlocutor / partner on the labor market

10. Evaluation

	1		1				
Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the	
				methods		final grade	
Seminar		Fulfilling work tasks at the		Written exam		30%	
Application		written test, taking part in a					
S		conversations or a monologue,		Oral exam		40%	
		seminar activity, homework		Practical		30%	
				assessment			
				(seminar activity,			
				homework)			
10.4 Minimum standard of performance:							
The student is accepted at the final evaluation, if his/her contribution to the seminar topics is 80%.							
The grade is	calcula	ated if each component is correctly	done	at least 60%.			

Final grade: 0,3 Ts + 0,4 Po + 0,3 P

Date of filling in

20.05.2023

Professor in charge with the discipline Conf. dr. Sanda Pădurețu Teachers in charge of the seminar

Conf. dr. Sanda Pădureţu

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	27

2. Data about the subject

2.1	Subject name				Thermotechnics			
2.2	Course responsible/lecturer				S.L. dr.ing Socaciu Lavinia - lavinia.socaciu@termo.utcluj.ro			
2.3	Teachers in ch	narge	of seminars		S.L. dr.ing Socaciu	Lavinia- lavinia.socaciu@te	rmo.utcluj.ro	
2.4 ۱	ear of study	2	2.5 Semester	2	2.6 Assessment	Exam		
2.7 9	2.7 Subject Formative category			·		DD		
cate	category Optionality					DI		

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	1	3.3 Project	0
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	14	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	У						18
(b) Supplementary study in the library, online and in the field								0		
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	s, pc	ortfolios, essa	ys		7
(d) Tutoring										0
(e) Exams and tests										3
(f) Other activities							0			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Physics, Mathematics, Materials science, Materials technology
4.2	Competence	Use of personal computer. Recognition of materials and
4.2	Competence	component mechanisms from different installations

5. Requirements (where appropriate)

E 1	For the course	Active and interactive learning conditions, didactic activities carried
5.1	For the course	out in a heuristic, problematic spirit; teaching aids: PC, teaching

		aids: PowerPoint presentation, teaching film, course support in PDF
		format
		Rules of conduct of students in the thermotechnics laboratory.
		Practical-applicative learning conditions, in a heuristic, problematic
5.2	For the applications	spirit.
5.2	Laboratory	Laboratory with material endowments specific to the
		thermotechnics and sheet metal laboratory.
		Attendance at applications is mandatory

6. Specific competences

		C2-The managing and solving o	f specific environmental problems for sustainable		
		Development			
		C2.1-The description and applic	cation of the concepts, theories and practical / technological		
_	s		mining the state of environmental quality		
ona	nce	C2.3-Applying basic technical a	nd technological knowledge in defining and explaining specific		
essio	ete	concepts of engineering and en	vironmental protection		
Professional	competence	C3-The application of general p	rinciples of technological calculation		
_ ₽_	8	C3.4-The evaluation of installati	ons, in conditions of qualified assistance, using the specific		
		documentation of the technological calculation			
		C3.5-The use of the concepts, th	neories and calculation methods in the field of environmental		
		engineering for the elaboration	of professional projects		
	s	CT2-Identifying roles and respon	nsibilities in a multidisciplinary team and applying relational		
S	competences	techniques and efficient work w	vithin the team		
Cross	bete	CT3- The efficient use of inform	ation sources and communication resources and assisted		
0	dmc	professional training (portals, In	ternet, specialized software applications, databases, online		
	ŭ	courses, etc.) both in Romanian	and in a language of International circulation		
7.	Dis	scipline objectives (as results fror	n the <i>key competences gained</i>)		
			Development of skills in the thermal field, forms of energy, their		
7.1	. 0	General objective	production and use in various industrial processes and		
			environmental impact		

7.2 Specific objectives Notions and applications related to: forms of energy, air, steam, fuels, thermodynamic cycles, heat transfer, machines and thermal installations

8. Contents

8.1. Lecture (syllabus)	Number of	Teaching	Notes
	hours	methods	
Introduction. General notions of thermodynamics. The	2	Classical,	Classical
object of thermotechnics. General study methods.		focused on the	teaching
Thermodynamic system.		student and	methods
Thermodynamic equilibrium state. Status sizes.	2	on the results	(exposure to
Thermodynamics postulates. The first principle of		of acquiring	the
thermodynamics. Internal energy. Mechanical work. The		the knowledge	blackboard)

Formulations of the first principle of thermodynamics.2course;with multimedia methodsMathematical expressions of the first principle of thermodynamics in technology2Interactive presentation, Debate, Participatory Discussions; minitive data and group2Participatory Discussions; minitive data and group exercisesThe perfect gas. General. The specific heat of perfect gases.2Participatory Discussion; minitive data and group exercises2The second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- bumidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer, in permanent regime, unidirectional, without internal heat changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Refrigeration installations and heat pumps2Compressors and fand Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course supert.2. Alboratory3. Michael J. Moran , Howard N. Shapiro, Daise D. Boetter, Margaret B. Bairy, FUNDAMENTALS OF BINISERING THERMODYNAMICS, Eighth Edition, 2014, http://krodrigues.net/libros/moran.pdf2. LaboratoryLaboratoryLaboratory3. Dictermination of the overall heat transfer coefficient and epipe bundle22. LaboratoryCaraching of hoursCaraching of hours3.	heat.		taught in the	combined
Mathematical expressions of the first principle of thermodynamics for open systems and closed systemsInteractive lecture; Presentation, Debate, Presentation, Debate, Participatory Discussions; Individual and group exercisesmultimedia methodsApplications of the first principle of thermodynamics processes of perfect gass.2Interactive participatory Discussions; Individual and group exercisesSimple state transformations (thermodynamic processes) of perfect gase.2Individual and group exercisesThe second principle of thermodynamics. Entropy. Cyclic diagrams of vapors.2Individual and groupThe humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air transfer. Hundamentals of heat transfer, heat transfer. Hundamentals of heat transfer, heat sources. Thermal conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductive of buid aggregation. Thermal radiation. Radiation heat transfer.2Refrigeration installations and heat pumps2Compresors and fans2Bibliography1. Socaciu Lavinia - Termotechnics - Electronic form course- survers.Prevont. Survers.1. Labor protection rules tensperature measurement22. LaboratoryInteractive expriment23. Albeard Difference tensperature measurement24. LaboratoryInteractive expriment23. Albeard Difference tensperature measurement24. LaboratoryInteractive expriment23. Determination of the thermal convect	Formulations of the first principle of thermodynamics.	2	course;	with
thermodynamics for open systems and closed systemsIecture; Presentation, Debate, Participatory Discussions; Individual and group exercisesmethods Presentation, Debate, Participatory Discussions; Individual and group exercisesmethods and roup exercisesSimple state transformations (thermodynamic processes) of perfect gases.2Individual and group exercisesThe second principle of thermodynamic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2exercisesVapor, Vaporization at constant pressure. Thermodynamic diagrams of vapors.2exercisesThe humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air entrongine undirectional, without internal heat sources. Thermal conductive heat transfer, in permanent regime, undirectional, without internal heat sources. Thermal conductive for bornes.2Convective heat transfer. Fundamentals of heat transfer, in permanent regime, undirectional, without internal heat sources. Thermal conductive for bornes.2Exercises2Convective heat transfer.2Perfergration installations and heat pumps222Sibliography1. Socaciu Lavinia - Termotechnics - Electronic form courses of hoursNumber experiment1. Labor torder23. Michael J. Moran, Howard N. Shapiro, Daise D. Boettner, of hoursRefing experiment1. Labor torder24. Laboratory21. Labor torder22. Laboratory23. Determ			Interactive	multimedia
Applications of the first principle of thermodynamics in technology2Presentation, Debate, ParticipatoryThe perfect gas. General. The specific heat of perfect gases.2Participatory Discussions; Individual and groupSimple state transformations (thermodynamic processes) of perfect gases.2Individual and groupThe second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air heat transfer. Fundamentals of heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer.2Heat exchangers.2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course sufficient and Michael Boles - Thermodynamics: An Engineering Aproach, 9th Edition, 20193. Michael J. Moran, Howard N. Shapiro, Daise D. Boettner, Heat Parater HERMODYNAMICS, Eighth Edition, 2014, http://krodriguez.net/libors/moran-pdf8.2. LaboratoryRefrigeration of hours1. Labor protection rules Lorpersture measurement22. LaboratoryInteractive and of hours3. Dictermination of the overall heat transfer coefficient and pipe bundle23. Determination of the overall heat transfer coefficient and quivalent thermal conductivity of an electrically headed if unace<			lecture;	methods
technologyDebate, Participatory Discussions;The perfect gas. General. The specific heat of perfect gases.2Participatory Discussions;Simple state transformations (thermodynamic processes)2Individual and groupof perfect gases.2exercisesThe second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. In permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Refrigeration installations and heat pumps21. Socaciu Lavinia - Termotechnics - Electronic form course ENGINEERING THERMODYNAMICS, Eight Edition, 2014. http://krodrig.Number methods1. Socaciu Lavinia - Termotechnics - Electronic form course ENGINEERING THERMODYNAMICS, Eight Edition, 2014. http://krodrig.Number methods1. Labor protection rules 1. Laboratory2Laboratory experiment2. Laboratory Temperature measurement2Laboratory experiment2. Individual and probudie1and equipment conventional, to the student- thermotich3. Determination of the thermal convection coefficient at a pipe bundleand and equipment conventional, to th		2	Presentation,	
The perfect gas. General. The specific heat of perfect gases.2 Participatory Discussions; Individual and groupSimple state transformations (thermodynamic processes) of perfect gases.2Participatory Discussions; Individual and groupThe second principle of thermodynamics. Entropy. Cyclic entropy of perfect gases. Entropic diagrams.2Participatory Perfect gases.Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2Participatory Perfect gases.The humidi air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer. (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Refrigeration installations and heat pumps 1. Socaciu Lavinia - Termotechnics - Electronic form course support.22. Yunus Cengel and Michael Boles - Thermodynamics. An Enjeneering Aproach, 9th Edition, 20193. Micheal J. Moran Howard N. Shapiro, Daisie D. Boetmer, Margaret B. Bailey, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS, Eighth Edition, 2014, Hurraret B. alley, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS, Eighthedition, 2014, Hurraret B. alley, FUNDAMENTALS OF Encore			Debate,	
gases.Discussions; Individual and group exercisesSimple state transformations (thermodynamic processes) of perfect gases.2Individual and group exercisesThe second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2		2	Participatory	
Simple state transformations (thermodynamic processes) of perfect gases.Individual and group exercisesThe second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Refrigeration installations and heat pumps2Sociau Lavinia - Termotechnics - Electronic form course support.21. Socaciu Lavinia - Termotechnics - Electronic form course support.22. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, Varunz Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20194. Laboratory22. LaboratoryLaboratory2. LaboratoryLaboratory4. Laboratory23. Determination of the thermal convection coefficient ata equipment2. Pressures measurement23. Determination of the overall heat transfer coefficient ata equipment2. Pressures measurement24. Numerical applications2<			Discussions;	
of perfect gases.groupThe second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Compressors and fans2Bibliography1.1. Socaciu Lavinia - Termotechnics - Electronic form course surves.21. SuboratoryPreaching methods8.2. LaboratoryNumber of hours1. Labor protection rules temperature measurement22. LaboratoryCalching methods3. Determination of the thermal convection coefficient at a pie bundle23. Determination of the thermal convection coefficient at a pie bundle24. Numerical applications24. Numerical applications25. Convective heat transfer officient ata a pie bundle36. Convective heat transfer (Hermal convection coefficient ata pie bundle17. Suppression and factory experiment28. Laboratory temperature measurement <td< td=""><td></td><td>2</td><td>Individual and</td><td></td></td<>		2	Individual and	
The second principle of thermodynamics. Entropy. Cyclic processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.2Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Refrigeration installations and heat pumps222Compressors and fas2Bibliography1.1. Socaciu Lavinia - Termotechnics - Electronic form course suport.212. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, HERMODYNAMICS , Eighth Edition, 2014, http://krodriguez.net/libros/moran.pdf8.2. Laboratory21. Labor protection rules temperature measurement22. Laboratory22. Laboratory22. Pressures measurement22. Pressures measurement22. Pressures measurement22. Pressures measurement23. Determination of the thermal convection coefficient at a pipe bundle2Determination of the overall heat transfer coefficient at a pipe bundle2And centered indixidual and laboratory <td></td> <td></td> <td>group</td> <td></td>			group	
processes (thermodynamic cycles). Carnot's theorem. The entropy of perfect gases. Entropic diagrams.Image: Construct of the second the second of the second		2	exercises	
entropy of perfect gases. Entropic diagrams.Image: Construct the series of				
Vapor. Vaporization at constant pressure. Thermodynamic diagrams of vapors.2The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers. Refrigeration installations and heat pumps2Compressors and fans2Bibliography1. Socaciu Lavinia - Termotechnics - Electronic form courses true sources. Thermad Phane Romodynamics: An Emerering Approach, 9th Edition, 2019 3. Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Biely, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS, Eighth Edition, 2014, htt://krodrigue.net/libros/moran.pdf8.2. Laboratory2I. Labor protection rules 1. Labor protection rules 2. Pressures measurement2J. Determination of the thermal convection coefficient at pipe bundle2J. Determination of the thermal convection coefficient at pipe bundle2Determination of the overall heat transfer coefficient at qipe bundle2A. Numerical applications2A. Numerical applications2				
diagrams of vapors.Image: Construction of the construction of		2	-	
The humid air. Thermophysical properties. Enthalpy- humidity diagram. Simple transformations of humid air2Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Refrigeration installations and heat pumps 0. Compressors and fans2Bibliography31. Socaciu Lavinia - Termotechnics - Electronic form course support.2.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 2019 3. Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS, Eighth Edition, 2014, http://krodriguez.net/libros/moran.pdf8.2. LaboratoryReaching methods21. Labor protection rules 1. Labor protection rules2Interactive specific2. Pressures measurement2Interactive specificSpecific and equipment3. Determination of the overall heat transfer coefficient at pipe bundle2and equipment conventional, to the student- centered individual and ipipe bundle24. Numerical applications2and equipment conventional, to the student- centered individual and ipipe bundle2				
humidity diagram. Simple transformations of humid airImage: Constant of the transfer. HeatConstant <td>The humid air. Thermophysical properties. Enthalpy-</td> <td>2</td> <td>-</td> <td></td>	The humid air. Thermophysical properties. Enthalpy-	2	-	
Heat transfer. Fundamentals of heat transfer. Heat transfer through conduction. Conductive heat transfer, in permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.2Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers. Refrigeration installations and heat pumps2Compressors and fans2Bibliography 1. Socaciu Lavinia - Termotechnics - Electronic form course- Sucaciu Lavinia - Termotechnics - Electronic form course- Sucaciu Lavinia - Termotechnics - Electronic form course- subility.Number of hours8.2. LaboratoryNumber of hoursTeaching methods1. Labor protection rules 1. Labor protection rules pipe bundle22. Pressures measurement pipe bundle2Laboratory experiment2. Pressures measurement pipe bundle2Laboratory experiment3. Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically headed furnace24. Numerical applications2group				
permanent regime, unidirectional, without internal heat sources. Thermal conductivity of bodies.Image: Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Refrigeration installations and heat pumps2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course support.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Editor, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, ISAGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigut.Teaching methods8.2. Laboratory1Teaching methodsNotes1. Labor protection rules temperature measurement2Laboratory2. Pressures measurement2Interactive supprimentSpecific equipment3. Determination of the overall heat transfer coefficient and pipe bundle2and equipment0. Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2and entrode4. Numerical applications2groupgroup		2	-	
sources. Thermal conductivity of bodies.Image: Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Convective heat transfer.2Heat exchangers.2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course suport.2. Yunus Cengel and Michael Boles - Thermodynamics: An Euserenin Autoran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://tkrodrigument8.2. LaboratoryNumber of hoursTeaching methods1. Labor protection rules2Laboratory2. Pressures measurement2Laboratory3. Determination of the thermal convection coefficient and pipe bundle2Specific equipment3. Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2Specific equipment4. Numerical applications2individual and isoantory4. Numerical applications2individual and isoantory	transfer through conduction. Conductive heat transfer, in			
Convective heat transfer (thermal convection) without changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Refrigeration installations and heat pumps2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course support.2.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Aptroach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, KINGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigue.8.2. LaboratoryNumber of hours1. Labor protection rules22. Pressures measurement23. Determination of the thermal convection coefficient at a pipe bundle23. Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications24. Numerical applications2	-			
changing the state of fluid aggregation. Thermal radiation. Radiation heat transfer.2Heat exchangers.2Refrigeration installations and heat pumps2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course support.2.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, Hargaret B. Biely, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigue.met/libros/methods8.2. LaboratoryNumber of hoursTeaching methods1. Labor protection rules2Laboratory1. Labor protection rules2Interactive2. Pressures measurement2Interactive3. Determination of the thermal convection coefficient at a pipe bundle2and0. Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2individual and iconventional, to the student- centered individual and iconventional, iconventiona	sources. Thermal conductivity of bodies.			
Radiation heat transfer.Image: Second Se	Convective heat transfer (thermal convection) without	2	-	
Heat exchangers.2Refrigeration installations and heat pumps2Compressors and fans2Bibliography21. Socaciu Lavinia - Termotechnics - Electronic form course suport.2.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran , Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OFENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigue.net/libros/moral.8.2. LaboratoryNumber of hours1. Labor protection rules22. Pressures measurement23. Determination of the thermal convection coefficient ata pipe bundle2Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications24. Numerical applications2	changing the state of fluid aggregation. Thermal radiation.			
Refrigeration installations and heat pumps2Compressors and fans2Bibliography1. Socaciu Lavinia - Termotechnics - Electronic form course support.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OFENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigue.net/libros/moran.pdf8.2. LaboratoryNumber of hours1. Labor protection rules22. Pressures measurement23. Determination of the thermal convection coefficient and pipe bundle2Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications22. Numerical applications2	Radiation heat transfer.			
Compressors and fans2Bibliography1. Socaciu Lavinia - Termotechnics - Electronic form course support.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OFENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodriguez.net/libros/moran.pdf8.2. LaboratoryTeaching of hours8.2. Laboratory2LaboratoryLaboratory experiment2. Pressures measurement23. Determination of the thermal convection coefficient and pipe bundle2Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications2	Heat exchangers.	2		
Bibliography1. Socaciu Lavinia - Termotechnics - Electronic form course support.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran , Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OFENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodrigue.net/libros/moran.pdf8.2. LaboratoryNumber of hours1. Labor protection rules21. Labor protection rules22. Pressures measurement23. Determination of the thermal convection coefficient at a pipe bundle2Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications2	Refrigeration installations and heat pumps	2	-	
1. Socaciu Lavinia - Termotechnics - Electronic form course suport.2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Aproach, 9th Edition, 20193. Michael J. Moran , Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodriguz.net/libros/moran.pdf8.2. LaboratoryNumber of hoursTeaching methods1. Labor protection rules2Laboratory1. Labor protection rules2Laboratory experiment2. Pressures measurement2Interactive specific3. Determination of the thermal convection coefficient and equivalent thermal conductivity of an electrically heated furnace2Interactive student- centeredSpecific equipment4. Numerical applications2groupIndividual andIaboratory	Compressors and fans	2		
2. Yunus Cengel and Michael Boles - Thermodynamics: An Engineering Approach, 9th Edition, 20193. Michael J. Moran , Howard N. Shapiro, Daisie D. Boettner, Wargaret B. Biley, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodriguz.net/libros/mutos/8.2. LaboratoryTeaching of hours1. Labor protection rules22. Pressures measurement23. Determination of the thermal convection coefficient and pipe bundle2Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace24. Numerical applications2	Bibliography			
3. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner, Wargaret B. Biley, FUNDAMENTALS OF ENGINEERING THERMODYNAMICS , Eighth Edition, 2014, http://krodriguez.net/libros/mor-n.pdf8.2. LaboratoryNumber of hoursTeaching methods1. Labor protection rules2Laboratory experiment2. Pressures measurement2Interactive3. Determination of the thermal convection coefficient ata pipe bundle2InteractiveDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2and4. Numerical applications2Individual and groupindividual and	1. Socaciu Lavinia - Termotechnics - Electronic form course s	upport.		
ENGINEERING THERMODYNAMICS, Eighth Edition, 2014, http://krodrigue.net/libros/moran.pdf8.2. LaboratoryNumber of hoursTeaching methodsNotes1. Labor protection rules2Laboratory experimentLaboratory2. Pressures measurement2InteractiveSpecific3. Determination of the thermal convection coefficient at a pipe bundle2andequipmentDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2individual and laboratoryindividual and laboratory4. Numerical applications22groupindividual andindividual and	2. Yunus Cengel and Michael Boles - Thermodynamics: An Er	ngineering Ap	proach, 9th Editi	on, 2019
8.2. LaboratoryNumber of hoursTeaching methodsNotes1. Labor protection rules2Laboratory experiment	3. Michael J. Moran ,Howard N. Shapiro, Daisie D. Boettner,	Margaret B.	Bailey, FUNDAM	ENTALS OF
8.2. Laboratoryof hoursmethodsNotes1. Labor protection rules2Laboratoryexperiment2. Pressures measurement2InteractiveSpecific3. Determination of the thermal convection coefficient at a pipe bundle2andequipmentDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heatedstudent-thermotechfurnace2Individual and grouplaboratorylaboratory	ENGINEERING THERMODYNAMICS, Eighth Edition, 2014, htt	p://krodrigu	ez.net/libros/mo	ran.pdf
of hoursmethods1. Labor protection rules2Laboratory experimentTemperature measurement2Interactive2. Pressures measurement2Interactive3. Determination of the thermal convection coefficient at a pipe bundle2andDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2interactive4. Numerical applications2group	8.2 Laboratory	Number	Teaching	Notor
Temperature measurementexperiment2. Pressures measurement2InteractiveSpecific3. Determination of the thermal convection coefficient at a pipe bundle2andequipmentDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnaceStudent-thermotech4. Numerical applications2groupIndividual andIaboratory	o.z. Laboratory	of hours	methods	NOLES
2. Pressures measurement2InteractiveSpecific3. Determination of the thermal convection coefficient at a pipe bundle2andequipmentDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heatedconventional, to theto thefurnaceIndividual and grouplaboratory	1. Labor protection rules	2	Laboratory	
3. Determination of the thermal convection coefficient at a pipe bundle2andequipmentDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnace2andto the1. Numerical applications22groupandand	Temperature measurement		experiment	
pipe bundleconventional,to theDetermination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnaceconventional,to theA. Numerical applications2grouplaboratory	2. Pressures measurement	2	Interactive	Specific
Determination of the overall heat transfer coefficient and equivalent thermal conductivity of an electrically heated furnacestudent- centered Individual and groupthermotech nics laboratory4. Numerical applications2	3. Determination of the thermal convection coefficient at a	2	and	equipment
equivalent thermal conductivity of an electrically heated furnacecentered ndividual and groupnics laboratory4. Numerical applications2group	pipe bundle		conventional,	to the
furnaceIndividual andlaboratory4. Numerical applications2group	Determination of the overall heat transfer coefficient and		student-	thermotech
4. Numerical applications 2 group	equivalent thermal conductivity of an electrically heated		centered	nics
	furnace		Individual and	laboratory
5. Determining the state quantities of humid air 2 exercises	4. Numerical applications	2	group	
	5. Determining the state quantities of humid air	2	exercises	

6. Determining the main characteristics of the heat pump	2	
7. Recovery of laboratory works (according to the ECTS	2	
regulation) and test to evaluate knowledge acquired in		
laboratory works		
Bibliography		

1. http://www.termo.utcluj.ro/termo_sinteza_lucrari/index.html

2. Socaciu L., Giurgiu O. – Termotehnică – Lucrări de laborator, Ed. UTPRESS, Cluj-Napoca, 2015, ISBN 978-606-737-089-8

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The approached contents cover fundamental topics of the discipline that ensure the Students familiarity with the specific issues of the discipline (concepts, theories, laws, principles and methods of knowledge, research, transfer in the practical-productive sphere)

The curriculum of the discipline is designed so as to facilitate the forming of professional competencies (specific to the profession, provided in the RNCIS documents) and transversal competencies) The contents approached include current topics (local, national, international) that are the subject of interest and / or debates / research conducted by professional associations and / or employers. The contents of the discipline were selected as a result of the collaboration of teachers with other teachers from universities in the country and / or abroad, as a result of the collaboration with the business environment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Knowledge of the basic concepts of the discipline and explanation of the interdependencies between them Communication of information using correctly the scientific language, specialized in the discipline of Thermotechnics Learning the issues covered in the course	Written exam in the exam session; the topics cover the whole subject	40%
	Ability to apply theoretical knowledge in solving practical problems (topics)	Solving some problems (applications)	30%
10.5 Laboratory	Knowledge of the operation of measuring devices, of experienced	Oral evaluation in each laboratory. Written and oral evaluation in	20%

10. Evaluation

	equipment and	the final laboratory		
1	installations, of the			
module for determining				
	the different parameters,			
	analysis of experimental			
	results and formulation of			
	personal conclusions /			
	observations			
10.6 Minimum standar	d of performance	I		
 Knowledge of the basic concepts of the discipline and their explanation 				
Communicating information using the correct, specialized scientific language				
Solving some problem	ns (applications) in the field o	of thermotechnics		

Date of filling in:		Title Surname Name	Signature
22.04.2023	Lecturer	S.L.dr.ing. Socaciu Lavinia	
	Teachers in charge of	S.L.dr.ing. Socaciu Lavinia	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	28.00

2. Data about the subject

2.1	Subject name				Materials technology II				
2.2	Course responsible (lecturer		Lecturer dr.eng. Monica Sas-Boca-						
2.2	Course respon	ourse responsible/lecturer		Monica.Sas.Boca@ipm.utcluj.ro					
2.3	Teachers in charge of seminars		Lecturer dr.eng. Monica Sas-Boca-						
2.5		laige	or seminars		Monica.Sas.Boca@ipm.utcluj.ro				
2.4 \	ear of study	II	2.5 Semester	4	2.6 Assessment	E			
2.7 5	2.7 Subject Formative category					·	DI/DD		
cate	category Optionality								

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y						28
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field					18
(c) Preparation for seminar	s/labc	oratory wo	orks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		9
(d) Tutoring										
(e) Exams and tests										3
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	General knowledge of technical drawing, technological procedures for obtaining and processing materials

5. Requirements (where appropriate)

5.1	For the course	Projector, computer, on site/on-line at Technical University of Cluj- Napoca
5.2	For the applications seminarului / laboratorului / proiectului	Technical University of Cluj-Napoca laboratories (E10)

6. Specific competences

_		•
		- Characterization of materials used in industry, from a mechanical point of view;
		- Knowledge of the technological possibilities of obtaining semi-finished products and finished
		parts;
		- Ability to design manufacturing technologies in advantageous economic conditions;
		- Establishing the conditions and technologies for reconditioning some parts.
		After completing the discipline students will be able to:
		 To use the equipment for technological characterization of materials;
		• To establish the conditions for determining the technological characteristics in relation to the
	Ś	requirements imposed by the specifications;
	competences	• To analyse the execution drawings of the piece and to establish the shape and dimensions of
	etei	the starting semi-finished product;
J. J. C. J		• To establish the optimal manufacturing technology related to the application possibilities;
6	r S	• To know how to establish the succession of operations and technological phases;
		• To know the technological possibilities of reconditioning used parts;
		• To know how to interpret the experimental results, the characteristics of the obtained pieces
		and to draw the necessary conclusions.
		After completing the discipline students will be able to:
		- to use the equipment for material characterization;
		- to establish the sequence of operations for obtaining finished parts;
		- to identify the appropriate manufacturing technologies for obtaining certain types of
		components.
		To know from a structural point of view the materials used in industry;
	JCes	To know technical drawing;
Cross	eter	Evaluate the manufacturing technologies of semi-finished products and relate them to the
ں ا	competences	available application possibilities;
	CO	To synthesize the requirements imposed on the elaborated materials and semi-finished products.

7. Discipline objectives (as results from the key competences gained)

		Understand the connection between manufacturing technology,
7.1	General objective	material properties, quality of the finished product and relate
		them to the possibilities of application in industry
	Specific objectives	• To analyze the execution drawings of the piece and to
		establish the shape and dimensions of the starting semi-finished
7.2		product;
		• To establish the optimal manufacturing technology related to
		the application possibilities;

• To know how to establish the succession of operations and
technological phases;
• To know the technological possibilities of reconditioning used
parts;
• To know how to interpret the experimental results, the
characteristics of the obtained pieces and to draw the necessary
conclusions.

8. Contents

	8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes			
1.	Tehnologia fabricării pieselor turnate: domenii de aplicare, condiții impuse pieselor și etape ale procesului	2					
2.	Procedee tehnologice de obţinere a formelor de turnătorie (modelul de turnatorie si amestecurile de formare), a fabricarii pieselor turnate si defectele acestora	2					
3.	Elaborarea pieselor prin turnare de precizie si prin turnare centrifugala	2					
4.	Tehnologia elaborării semifabricatelor laminate	2					
5.	Prelucrarea materialelor prin tragere și trefilare	2	On site (an	Each process			
6.	Procedee tehnologice de laminare și tragere a țevilor	2	On-site/on-	is illustrated			
7.	Prelucrarea materialelor prin forjare: condiții impuse pieselor și etape ale procesului	2	line/ presentation	by video applications.			
8.	Prelucrarea materialelor prin forjare liberă și matrițare	2					
9.	Prelucrarea materialelor prin extrudare	2					
10.	Prelucrarea tablelor prin forfecare ştanţare şi ambutisare	2					
11.	Tehnologia fabricării pieselor sudate și procedee de recondiționare a acestora	2					
12.	Elaborarea pieselor prin metalurgia pulberilor	2					
13.	Notiuni generale privind prelucrarea materialelor prin aschiere	2					
14.	Tehnologii neconventionale de obtinere a pieselor	2					
Bib	Bibliography						

1. N. Vintilă – Tehnologia metalelor, Vol. I-II, Lit. Institutului Politehnic Cluj, 1978.

2. A. Palfalvi și alții – Tehnologia materialelor, E.D.P. București, 1985.

3. M. Golumba – Tehnologia materialelor, Lit. Institutului Politehnic Timişoara, 1981.

4. I. Mălureanu-Tehnologia materialelor, Ed. Gh. Asachi, Iaşi, 1999.

5. D.R. Mocanu – Încercările materialelor, Vol I-II, Editura Tehnica București, 1982.

6. L. Brânduşan C. Pavel, R. Mureşan, Tehnologia Materialelor, Îndrumător pentru lucrări de laborator, Editura U.T. PRES 1999, Cluj-Napoca.

7. Tratat de stiinta si ingineria materialelor metalice. Vol. IV. Tehnjologii de procesare primara a

materialelor metalice; Coordonare generala: Rami Saban, Constantin Dumitrescu; Responsabil volum IV: Iulian Riposan; Editura AGIR ISBN: 978-973-720-064-0

8. Tratat de stiinta si ingineria materialelor metalice. Vol.5. Tehnologii de procesare finala a materialelor metalice; Coordonare generala: Prof.univ.dr.ing.Rami Saban, Prof.univ.dr.ing.Constantin Dumitrescu; Editura: A.G.I.R. ISBN: 978-973-720-391-5; 2012.

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
	of hours	methods	Notes
1. Technological tests of pipes	2		n IS
2. Determination of the deformation capacity of the			owi tion by
sheets by alternating bending. Determining the behavior of	2	icia	te d era iine
the sheets for double bending and bending of the strips		equipment is described, the technician exemplifies the way of working.	Students perform the measurements, write down the data, perform individually different operations specific to the related works and determine by calculation the results obtained.
3. Determination of the stamping capacity of sheets	2	e te orki	nents, wr ifferent o nd deterr obtained.
and strips by the Erichsen method	2	l, th f w	eme diffe and ob
4. Determination of the deformation capacity by		ibec ay o	easurei Jually d works a results
discharge of materials Establishment of material	2	e w	nea: idua wo res
processing operations in order to obtain parts of different	2	s de s th	ne n divi ited the
configurations		quipment is described, the tech exemplifies the way of working	perform the m perform indivio to the related calculation the
5. Determining the mass of the starting semi-finished	2	d me	rfor for the cula
product to obtain parts by forging.	2	exe	per per c to calc
6. Technological properties of powders	2	The e	Students :he data, specific 0
7. Non-destructive testing methods; Control with	2		tud ne d spe
liquids and penetrating radiation	Z		t S
Ribliography	•		•

Bibliography

1. I. Mălureanu-Tehnologia materialelor, Ed. Gh. Asachi, Iaşi, 1999.

2. D.R. Mocanu – Încercările materialelor, Vol I-II, Editura Tehnica București, 1982.

3. L. Brânduşan C. Pavel, R. Mureşan, Tehnologia Materialelor, Îndrumător pentru lucrări de laborator, Editura U.T. PRES 1999, Cluj-Napoca.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be applied in the design activities of the technological processes in the industry and of the activity sectors.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	The exam consists of checking the knowledge in writing or orally.	Online / written	75%				
10.5 Seminars /Laboratory/Project	Exam note (online, oral or written); Laboratory (note L);	Evaluation of laboratory works	25%				
10.6 Minimum standa	10.6 Minimum standard of performance N = 0.75 + 0.25L						

Condition for obtaining credits ECTS: N \geq 5; L \geq 5

Date of filling in:		Title Surname Name	Signature
10.05.2023	Lecturer	Lecturer dr.eng. Ioana Monica Sas-Boca	
	Teachers in charge of	Lecturer dr.eng. Ioana Monica Sas-Boca	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	29

2. Data about the subject

2.1	Subject name				Materials properties			
2.2	Course responsible/lecturer				Conf. Dr. Phys. Florin Popa – <u>florin.popa@stm.utcluj.ro</u>			
2.3	Teachers in charge of seminars				Conf. Dr. Phys. Florin Popa – <u>florin.popa@stm.utcluj.ro</u>			
2.4	2.4 Year of study 2 2.5 Semester 2			2	2.6 Assessment	Examination		
2.7 9	2.7 Subject Formative category				·		DID	
category Optionality							DOB	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	2	3.3 Projec	t -
3.4 Total hours in the curriculum		of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	28	3.6 Projec	t -
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	у						23
(b) Supplementary study in the library, online and in the field								10		
(c) Preparation for seminar	s/labo	ratory wo	rks, hon	newo	ork, report	s, pc	ortfolios, essa	ys		10
(d) Tutoring										2
(e) Exams and tests										3
(f) Other activities										-
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 48										
3.9 Total hours per semester (3.4+3.8) 104										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Physics, chemistry, and material science knowledges

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	
	seminarului / laboratorului /	

6. Specific competences

		Th	eoretical knowledge (What he needs to know)
		-	To know the general physical, mechanical, and technological properties of materials,
			their variation limits applied to material classes and inside material classes
		-	To understand material properties, how and why some properties change after
			modifying external conditions (temperature, deformation, time, etc.) or internal
			conditions (composition, structure, etc.)
		-	To understand dependence material-structure-properties-usage.
		-	To evaluate the engineering materials for their property aspect
_	S	Ac	quired skills (what he needs to do)
ona	petences	-	To use properly the measurement units of different properties
Professional	oete	-	To use correlation between material-structure-property in order to modify the material
Prof	comp		properties
	C	-	To know (as fundamental) the methods of material property determination
		-	To be able of analysing the material data, and to make correlation between material
			properties and their practical usage
		-	To know how to produce new materials, new manufacturing technologies, and finding
			rational usage of materials
		Ac	quired skills (what equipment he knows to use)
		-	After following the lecture, the undergraduate will be able to use dilatometer, Thomson
			Bridge, thermal and electrical conductivity setup, oscilloscope, electromagnets.
		-	To realize experimental setups for different physical measurements
		-	To acquire a scientific language, with engineering terms
Ses		-	To transfer analysis method to different material types
tenc		-	- to correlate the microstructure properties with physico-mechanical properties of materials
Jpet		-	To be able to exercise the specific roles of teamwork, on different hierarchical levels
con		-	To promote the spirit of initiative, dialogue, cooperation, positive attitude, respect for
Cross competences			others, diversity / multiculturalism, continuous improvement of his professional activities
J		-	To objectively self-assess the need for continuous professional training
		-	Be able to use multilingual skills and knowledge of information technology effectively.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Material properties field competence development and properties
/.1	General Objective	characterisation methods knowledge
		To understand the material properties in their complexity – ${\rm how}$
		and why some properties change after modifying external
7.2		conditions (temperature, deformation, time, etc.) or internal
1.2	Specific objectives	conditions (composition, structure, etc.)
		To understand dependence material-structure-properties-usage.
		To evaluate the engineering materials for their property aspect

8. Contents

Q 1 Looture (sullabus)	Number of	Teaching	Netes
8.1. Lecture (syllabus)	hours	methods	Notes
1. Material properties and classification. Structural	2		
properties.			
2. Structural properties of materials (part II).	2	Lecture	
3. Thermal properties of materials (thermal expansion,	2		
specific heat, thermal conductivity).		PowerPoint	
4. Electrical properties of materials. Conducting materials.	2	presentation	
5. Electrical properties of materials. Semiconductors and	2		
insulators.		Interactive	
6. Magnetic properties of materials. Hysteresis cycle and	2	teaching mode	
magnetic material classification.			
7. Magnetic properties of materials. Extrinsic and intrinsic	2	Dialogue -	Multimedia
magnetic properties.		conversation	
8. Optical properties of materials	2	professor –	Blackboard
9. Mechanic properties of materials (resilience, elasticity,	2	student	
plasticity. Variation ranges of mechanical properties		Student	
function materials types)		participation	
10. Mechanic properties of materials (Influence factors)	2	at	
11. Dislocation theory and mechanic properties of	2	supplementary	
materials		practical	
12. Technological properties of materials	2	activity is	
13. Liquid state material properties	2	encouraged	
14. High temperature properties. Thermoelectric,	2	1	
thermomagnetic, and galvanometric effects.			
Bibliography			

- 1. Gh. Matei, Teoria structurală a proprietăților metalelor, Lito UTCN, 1986.
- 2. V. Pop, I. Chicinaș, Proprietățile fizice ale metalelor și aliajelor, Lito Univ. "Babeș-Bolyai" Cluj-Napoca, 1997.
- 3. V. Pop, I. Chicinaș, N. Jumate, Fizica materialelor. Metode experimentale, Ed. Presa universitară clujeană, Cluj-Napoca, 2001
- 4. I. Chicinaș, Mărimi magnetice de material, Ed. Casa Cărții de Știință, Cluj-Napoca, 2002
- 5. N. Jumate, I. Chicinaș, Aliaje amorfe și nanocristaline, Editura UT Pres, Cluj-Napoca, 2002
- 6. S.V. Wonsovshi, Magnetismul, Editura tehnica Bucuresti, 1981.
- 7. M. Ursache, D. Chirica, Proprietatile metalelor, E.D.P. Bucuresti, 1982.
- 8. Dieter G. jr. Metalurgie mecanica, Editura Tehnica Bucuresti, 1970.
- 9. A. Domsa, S. Domsa, Materiale metalice in constructii si instalatii, Editura DACIA, Cluj-Napoca, 1981.
- 10. D.R. Mocanu si col., Incercarea materialelor, vol.I, Ed. Tehnică, Bucuresti, 1988

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
1. Measurement error theory basics	2	4 laboratories	Before each
2. Temperature influence study on resilience and plasticity	2	are	laboratory
of steels		performed	students
3. Elastic module comparative analysis for ferrous and	2	with all	presents an
nonferrous materials		students.	abstract of

4. Thermal expansion coefficient determination and	2	10 activities	work to be			
crystallographic transformation temperature observation		are splited in	done. After			
by dilatometric measurements		two, and	activity			
5. Thermal conductivity measurement for metals and	2	students	students			
alloys.		performs	performs			
6. Electrical resistivity of metals. Resistivity dependence on	2	activity in	computatio			
composition and mechanical deformation		small groups	ns and			
7. Electrical resistivity coefficient measurement for metals	2	by rotation.	realize			
8. Band gap measurement in a semiconductor (thermistor)	2	-	graphics.			
9. Piercing electric field of an insulator measurement	2	-				
10. Measurement of hysteresis cycle parameters for soft	2	-				
and hard magnetic materials						
11. Curie temperature measurements for ferromagnetic	2					
materials						
12. Emission band measurement for semiconducting	2					
devices						
13. Signal transmission by optical fibres study.	2					
14. Semiconductors excess charge carriers lifetime	2	1				
measurements						
Bibliography			L			
 Pop, I. Chicinaş, Proprietățile fizice ale metalelor și aliajelor, Lito Univ. "Babeş-Bolyai" Cluj-Napoca, 1997. D.R. Mocanu si col., Incercarea materialelor, vol.I, Ed. Tehnică, Bucuresti, 1988 						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who will carry out their activity within the specialized industrial companies.

Knowledge of how to evaluate the properties of materials are prerequisites for the correct materials use on specific applications.

10. Evaluation

Activity type	10.1 Accordment oritoria	10.2 Assessment methods	10.3 Weight in the
Activity type	10.1 Assessment criteria	10.2 Assessment methods	final grade
	Knowledge of the	Write and oral examination	
	general physical,	Written examination has two	
	mechanical, and	parts:	N=0.25FT+0.75T
	technological properties	1. fast test (FT) on	(if N>7)
10.4 Course	of materials	measurements units (9	N=((0.25FT+0.75
10.4 Course	- understanding the	question/90s)	T)+O)/2
	factors leading to	2. test (T) with questions from	(if N<7)
	material properties	lectures	
	change		
	- understand		

1		
	dependence material-	Oral (O) examination for
	structure-properties-	students with grades below 7.
	usage	
	 theoretical knowledge 	
	usage application on real	
	cases	
	 properly usage of the 	
	measurement units	
	- understanding of	
	material-structure-	
	property relation	
	-to know at principal level	
	the measurements	
	methods of material	
	properties	
	notebook with	
10.5 Seminars	calculations is required to	
/Laboratory/Project	be fulfilled before	
	examination	
10.6 Minimum standa	ard of performance	
N≥5		

Date of filling in:		Title Surname Name	Signature
20.04.2023	Lecturer	Associate professor Florin Popa	
	Teachers in charge of	Associate professor Florin Popa	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	30

2. Data about the subject

2.1	Subject name				Applied Informatics I				
2.2	Course responsible/lecturer				Assoc. Prof. PhD.Eng. Adriana NEAG				
2.2					adriana.neag@ipm.utcluj.ro				
2.3	Teachers in ch	narge	of seminars		Lect.dr.eng. Dan NOVEANU - dan.noveanu@ ipm.utcluj.ro				
2.4 Y	2.4 Year of study 2 2.5 Semester 2			2	2.6 Assessment	V			
2.7 Subject Formative category									
cate	category Optionality								

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	1	3.3 Seminar		3.3 Laboratory	2	3.3 Project	
3.4 Total hours in the curriculum	42	of which	3.5 Course	14	3.6 Seminar		3.6 Laboratory	28	3.6 Project	
3.7 Individual study:					L				-	
(a) Manual, lecture materia	l and	notes, bib	liograph	y						
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field					
(c) Preparation for seminar	s/labc	oratory wo	rks, hon	newo	ork, report	ts, po	ortfolios, essa	ys		
(d) Tutoring										
(e) Exams and tests										
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f)))										
3.9 Total hours per semester (3.4+3.8)										
3.10 Number of credit points 2										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
12	Competence	General knowledge of PC operation. Understanding how to read
4.2	Competence	technical drawings.

5. Requirements (where appropriate)

|--|

5.2	For the applications	Attendance at the laboratory is mandatory.
-----	----------------------	--

6. Specific competences

		After completing the course students will be able to:
	(0	-use the AutoCAD program to create 2D technical drawings;
nal	nce	-be able to modify 2D drawings;
Professional competences		-be able to dimension and set up the 2D format according to the norms of the technical drawing;
		-interpret the meaning of toleranced dimensions and geometric tolerance symbols;
д.	S	-comprehend geometrical details of common engineering objects;
		-draw sectional views of simple engineering objects.
	es	Improving PC operating knowledge.
SS	ence	Developing communication skills.
Cross	pet	
	competences	
	9	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Skill development in the field of assisted design using AutoCAD. Medium level 2D assisted design in the mechanical field.
7.2	Specific objectives	Students will learn: -basic principles of 2D design in AutoCAD; - general aspects regarding CAD design.

8. Contents

8.1. Lecture (syllabus)	Number of	8	Notes
	hours	methods	
CAD products. Basic concepts of computer aided graphics.	2		
Introduction to AutoCAD. Management of screen menus	2		
commands. Introduction to drawing entities.			
Coordinate systems: Cartesian, polar and relative	2		
coordinates. Drawing limits, units of measurement and		P	
scale.		Presentatior	
Editing/modifying drawing entities: selection of objects,	2	inta	
object snap modes, editing commands,		tion	
Dimensioning: use of annotations, dimension types,	2		
properties and placement, adding text to drawing			
Layering: organizing and maintaining the integrity of	2		
drawings.			
Templates settings in AutoCAD.	2	1	
			-

Bibliography

^{1.} Brad L., Itu A.M., AutoCAD 2000, Indrumator de laborator, Editura Todesco 2000, Cluj-napoca, ISBN 973-99780-8-8

2. https://www.autodesk.com/education/edu-softwar	e		
8.2. Seminars /Laboratory/Project	Number	Teaching	Notes
o.z. Seminars / Laboratory/Project	of hours	methods	notes
Interface Tour. Features. Configuring the work	2		
environment. Quick Access toolbars.			
Create basic geometric objects in your own drawing	2		
template. Multiple selections.			
Perform editing operations such as: erase, move, trim and	2	Learning by	
extend on the objects in a drawing.		doing	
Create objects using offset, mirror, and array command.	4		
Scaling and dimensioning the objects in a drawing. Types	4		
of dimensions.			
Hatching and creating notes and labels in a drawing.	4		
Advanced drawing commands. Create the objects'	4		
projections.			
Drawing objects using layers and setting up of templates	4		
Evaluation	2		
Bibliography			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within the design and manufacturing departments.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Written test		25%			
10.5 Seminars /Laboratory/Project	Individual independent projectwork/drawing in AutoCAD		75%			
10.6 Minimum standard of performance						
Min 5						

Date of filling in:		Title Surname Name	Signature
12.03.2023	Lecturer	Assoc. Prof. PhD.Eng. Adriana NEAG	
	Teachers in charge of	Lect.dr.eng. Dan NOVEANU	
	application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

-		
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	31

2. Data about the subject

2.1	Subject name			Fluid Mechanics			
2.2	2 Course responsible/lecturer			Dr.ing. Corina Giurgea			
2.3	.3 Teachers in charge of seminars			Dr.ing. Corina Giurgea			
2.4 ۱	2.4 Year of study II 2.5 Semester IV		IV	2.6 Assessment	Exam		
2.7 \$	2.7 Subject Formative category						DI
cate	category Optionality						-

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	42	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	.4
(b) Supplementary study in the library, online and in the field							2	20		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						2	20			
(d) Tutoring										
(e) Exams and tests								4		
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mandatory: Basics in physics, mathematics (mathematical analysis,
4.1	Curriculum	special mathematics) and mechanics
		Mathematical understanding, Calculus (derivative and integral of a
		function), good understanding of the basic principles of physics and
4.2	Competence	mechanics and ability to apply them to solve simple practical
		problems; ability to plot and interpret graphs

5. Requirements (where appropriate)

5.1	For the course	Internet access, Multi-media projector, , Blackboard
For the applications 5.2		Internet access, Laptop/Computers as the Laboratory
5.2		worksheets/tests should be filled in for each laboratory class

6. Specific competences

Professional competences	 C2.2. Using the knowledge concerning the fluid mechanics and other basic engineering sciences to explain and interpret the theoretical and experimental results, the drawings and the specific materials engineering phenomena and processes C2.3. Applying the principles and methods from fluid mechanics and other basic science of engineering domain for strength calculations, sizing, establishing the technical conditions, establishing correspondence between features and functional role prescribed, and so on, in specific applications of materials engineering under qualified help. C2.4. Appropriate use of the standard assessment criteria and methods from basic engineering sciences, for: identification, modeling, experimentation, analysis and assessment of the qualitative and quantitative aspects, phenomena and definitive parameters as well as gathering and processing data, analysis of the results from specific materials engineering trials
Cross competences	CT1. Applying the values and the ethics of the profession of engineer and the responsible execution of the professional duties under limited autonomy and qualified assistance. Promoting the logical reasoning, convergent and divergent, the practical applicability and the assessment and self-evaluation decisions. CT3. Objective self-evaluation of the need of continuous training for labor market insertion and the accommodation to its dynamic requirements and for personal and professional development. Effective use of language skills and knowledge of information technology and communication

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Acquiring knowledge of the fundamental concepts, principles and equations of fluid mechanics and practicing them through solving some problems / technical applications		
7.2	Specific objectives	 After the completion of this course, students will be able: to measure fluid/fluid flow parameters to use the laboratory equipment to analyse and solve a variety of problems involving fluid flows as well as to explain and discuss the results to calculate/design a simple flow loop 		

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Introduction. The concept of fluid. Forces in fluid mechanics.	2	Interactive Lectures	Exploit the movies, images
Properties of the fluids I. Mass, Density, Specific Gravity and Pressure definition	2	(on site and/or on Teams Platform)	and medias (reference to [6] and [7])

Properties of the fluids II. Compressibility of fluids. The	2	Selected
State Equation.		additional
Properties of the fluids III. Viscosity. Newtonian and non-	2	problems will be solved
Newtonian fluids		
	2	-
Properties of the fluids IV. Vapor pressure and cavitation		
phenomenon. Surface tension		
Fluid statics I. Pressure variation in a fluid at rest. Pascal	2	
Law. Measurement of pressure. Manometry		
Fluid statics II. Hydrostatic force on plane surfaces.	2	
Hydrostatic force on curved surfaces		
Fluid statics III. Buoyancy. Stability of immersed and	2	
floating bodies		
Fluids in motion. Velocity field. Pathlines and Streamlines.	2	
Classification of flows. The flowrate. Instruments and		
methods for measurement of flowrates		
Inviscid flows. The continuity equation. Bernoulli equation	2	
and applications		
Inviscid flows. Linear momentum equation. Application of	2	
the linear momentum equation		
Viscous flow in pipes. Major and minor losses in pipes flow	2	
Dimensionless groups, Similarity and Model Development	2	1
in Fluid Mechanics		
Trends in fluids engineering	2	
Bibliography		· · · · ·

- 1. Giurgea C., Lecture Notes in Fluid Mechanics (e-version), UTPRESS Cluj Napoca, 2016, ISBN 978-606-737-176-5
- 2. http://www.slideshare.net/ArchieSecorata/fluid-mechanicsfundamentals-and-applications-by-cengel-cimbala-3rd-c2014-txtbk
- 3. Munson B.R., Young D.F., Okiishi T.H., Fundamentals of Fluid Mechanics, Fifth edition, John Wiley &son, 2006
- 4. Munson B.R., Young D.F., Okiishi T.H., Fundamentals of Fluid Mechanics. Student Solutions Manual and Study Guide, Fifth edition, John Wiley &son, 2006
- 5. Evett J.B., Cheng Liu, 2500 Solved Problems in Fluid Mechanics and Hydraulics, McGraw-Hill, 1989
- 6. Homsy G.M. et all, Multimedia Fluid Mechanics (DVD), Second edition, Cambridge
- 7. Different documents posted to Teams Platform

8.2. Laboratory	Number of hours	Teaching methods	Notes
Dimensions and units. Dimensional Homogeneity and units. Systems of units. Unit conversion	2	Short presentation of the theoretical	
Establishing the compressibility factor and the bulk modulus of one fluid	2	aspects/method and procedure Experimental	
Measuring the viscosity of fluids by using the Hoppler apparatus and the Rheotest apparatus. Understanding the effect of temperature on the viscosity	2	work Assignments (quiz/test + lab worksheet)	

Observation of the cavitation phenomenon in a liquid	2		
Measuring the energy losses in pipes and bends.	2		
Investigating the effects of laminar and turbulent flow			
regimes			
Measurement of flow rates	2	-	
1 Denvei D. Civerges C. Marguel, Negovitivel, Operate D.	Vaida I Maa	anion Fluidolon I	

- 1. Banyai D., Giurgea C., Marcu L., Nascutiu L., Opruta D., Vaida L., *Mecanica Fluidelor Lucrari Practice*, U.T. Press, Cluj Napoca, 2014, ISBN 978-973-662-934-1
- 2. Armfield _ Engineering Teaching&Research Equipment Instruction Manual
- 3. Gunt Laboratory Guide and Equipment Instruction Manual
- 4. Munson B.R., Young D.F., Okiishi T.H., Fundamentals of Fluid Mechanics. Student Solutions Manual and Study Guide, Fifth edition, John Wiley &son, 2006
- 5. Evett J.B., Cheng Liu, 2500 Solved Problems in Fluid Mechanics and Hydraulics, McGraw-Hill, 1989
- 6. Laboratory classes material posted on Teams

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Nowadays the presence of fluids in technological devices is ubiquitous, starting from power systems to artificial heart. In order to predict the fluids motion, a future engineer not only should be familiar with the basic principles of fluid mechanics but should also have a deeper physical insight into the behaviour of fluids. In particular, "the majority of engineers who are not fluid dynamicists still will need to interact, on a technical basis, with those who are quite frequently;and a basic competence in fluid dynamics will make such interactions more productive" (J.McDonough, Lectures in Elementary Fluid Dynamics: Physics, Mathematics and Applications, University of Kentucky, 2009)

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
	The ability to answer the theoretical questions and the practical problem- solving skills	Written final test (FT)	40%
10.4 Course	The familiarity and ability to work on a Fluid Mechanics subject. The ability to work in team (groups of 4-5 students) and to make a presentation and a report on a subject related with Fluid Mechanics	Homework (H): Written report Oral presentation Q&A session	30%
10.5 Laboratory	The ability to answer to questions regarding the instruments and procedures used in laboratory classes + Activity during the lab classes	Laboratory sheet filling (LS)+ activity during laboratory classes appreciation (LA) L=0.7(LS) +0.3 (LA)	30%

10. Evaluation

The final mark N=0.4 (FT)+ $0.3\cdot(H)+0.3\cdot(L)$ will be determined using the weighting above. The final credit can be received only if each of the mark's components is fulfilled: N \geq 5; FT \geq 5; H \geq 5; L \geq 5. Mandatory requirement: A pass mark (of minimum 5) at each Laboratory activity (LT and LA) is compulsory for taking the final written test.

Date of filling in:		Title Surname Name	Signature
21.03.2023	Lecturer	dr. ing. Corina Maria Giurgea	
	Teachers in charge of application	dr.ing. Corina Maria Giurgea	
Date of approval in t	he department	Head of departme	ent
26.06.2023		Ass.prof.dr.eng. Mariana Pop	
	the faculty	Dean	

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	32

2. Data about the subject

2.1	Subject name	ame			Materials analysis and characterisation techniques			
2.2	Course responsible/lecturer				Assoc.Prof. Bogdan Viorel Neamtu			
2.2					Assoc.Prof. Traian Florin Marinca			
				Assoc.Prof. Bogdan Viorel Neamtu				
2.3	Teachers in charge of seminars				Assoc.Prof. Traian Florin Marinca			
2.4	Year of study	2	2.5 Semester	2	2.6 Assessment		С	
2.7 Subject Formative category				DD				
category		Opti	onality				DI	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar	0	3.3 Laboratory	2	3.3 Project	0
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar	0	3.6 Laboratory	28	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	y					1	5
(b) Supplementary study in	the li	brary, onli	ne and i	n the	e field					3
(c) Preparation for seminar	s/labc	ratory wo	orks, hon	newo	ork, report	ts, po	ortfolios, essa	ys	-	7
(d) Tutoring										1
(e) Exams and tests										3
(f) Other activities									(C
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 19										
3.9 Total hours per semester (3.4	+3.8)				75					
3.10 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge of physics, chemistry, material properties, etc.
4.2	Competence	General knowledge of physics, chemistry, material properties, etc.

5. Requirements (where appropriate)

.1 For the course

	For the applications
5.2	seminarului / laboratorului /
	proiectului

6. Specific competences

_		
		After completing the course and laboratory work, the student must:
		• Understand the difference between the different types of structures that appear in materials
		• To know how to evaluate the composition and microstructure of a material through qualitative
	s	and quantitative instrumental analyzes
ona	nce	 To understand the operation of complex research and investigation equipment
essic	ete	 To know the methods and means used in optical and electron microscopy
Professiona	competences	• To know how X-rays interact with matter and to understand what kind of information related
٩	2	to the structure of materials can be obtained from this interaction.
		• To be able to correlate the microstructural properties with the physical-mechanical properties
		of a material
		 To know which method of analysis is suitable for characterizing a material;
		• To acquire an adequate scientific language, with specific engineering notions.
Ces		 Develop skills and the ability to operate with measurement data.
eter		• Know how to appreciate the nature and type of errors in specific laboratory measurements.
ă	2	 Know how to process statistics and interpret measurement data
Cross competences		 Know how to analyze the data provided by the investigation equipment
ros		• Know how to interpret data obtained from devices that work on different principles, but that
	,	measure the same parameters of the material

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	To know how to use complex laboratory equipment correctly To develop skills and the ability to operate with: optical, electronic microscopes, structural investigation devices, etc.
7.2	Specific objectives	Interpretation of X-ray diffraction, optical, electron microscopy and AFM images. To be able to analyze EDX spectra thermal analysis curves (DSC, DTA, TG), IR spectra.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introductory notions. The crystalline, amorphous and nanocrystalline structure of materials.	2		
2. Investigation of the structure of materials by X-ray diffraction. Production of X-rays. Continuous spectrum and discrete spectrum. X-ray diffraction	2		
3. Factors influencing the intensity of diffracted rays.	2		

X - ray diffraction methods and techniques			
4. Indexing diffraction images. Qualitative and		Lecture	Multimedia
quantitative analysis of phases by X-ray diffraction.	2		
Determination of residual austenite.		PowerPoint	Blackboard
5. Determining the average size of crystallites.		presentation	
Residual internal stresses. Texture analysis. Density of	2		
dislocations. Packaging defects.		Interactive	
6. Optical microscopy. Special techniques of optical	2	teaching mode	
microscopy.	2		
7. Scanning electron microscopy (SEM).	2	Teacher-	
8. X-ray microanalysis (EDX + WDX).	2	— student — dialogue	
9. Transmission electron microscopy (TEM). Electron	2		
diffraction	2		
10. Thermal analysis in the study of materials.	2		
Interpretation of material cooling curves	Z		
11. Simple thermal analysis. Differential thermal	2		
analysis (AT + DTA).	Z		
12. Differential scanning calorimetric analysis (DSC).	2		
Thermogravimetric analysis (TG).	Z		
13. Infrared analysis of condensed media. Molecular	2		
spectra.	Z		
14. Special methods of material analysis (AFM, MRI,	2	7	
RES, Mosbauer, X-ray)	2		
Bibliography			
1 Shaun Wilson Charles A Evans C P Prundle Engys	lonadia of r	Matarials Characta	rization

1. Shaun Wilson, Charles A. Evans, C. R. Brundle, Encyclopedia of Materials Characterization, 1992, Butterworth-Heinemann, ISBN-13: 978-0750691680

2. David Brandon Wayne D. Kaplan, Microstructural Characterization of Materials, 2008, John Wiley & Sons, Ltd, ISBN:9780470027844;

3. Naryanaswami (Mohan) Ranganathan, Materials Characterization, Modern Methods and Applications, ISBN 9789814613064, 2015, Jenny Stanford Publishing

4. Sharma Surender, Handbook of Materials Characterization, 2018, ISBN 978-3-319-92955-2, Springer International Publishing

8.2. Seminars /Laboratory/Project	Number of hours	Teaching methods	Notes
1. Safety measurements. List of works. Laboratory presentation. Miller plans and indices	2	Practical measurement	
2. Indexing of X-ray diffraction images. Determining the parameters of the crystal lattice	2	s, data recording,	Blackboard, computer, Specialized
3. Determining the average size of crystalline grains. Amorphous and nanocrystalline structures	2	spectrum interpretation	software
4. Quantitative analysis. Determination of residual austenite in steels.	2	, mathematical	equipment
5. X-ray diffraction at high temperatures	2	calculation.	

6. Determination of critical points of materials by	2		
thermal methods (DTA / DSC).			
7. Investigation of materials by thermogravimetry	2		
8. Optical microscopy in polarized light / other	2		
techniques (qualitative, quantitative)			
9. Use of the stereomicroscope in the investigation of	2		
materials. Images obtained in reflection and			
transmission mode			
10. Obtaining and analyzing scanning electron	2		
microscopy images - 1			
11. Obtaining and analyzing scanning electron	2		
microscopy images - 2			
12. Chemical analyzes with X-ray microradiation in	2		
SEM (EDX) - 1			
13. Indexing of IR, NIR and FAR spectra	2		
14. Applications of IR spectroscopy on organic /	2		
inorganic materials			
Bibliography	1		
1. Shaun Wilson, Charles A. Evans, C. R. Brundle, Encyc	lopedia of Ma	terials Charact	erization,

1992, Butterworth-Heinemann, ISBN-13: 978-0750691680

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity within a sector of manufacturing and / or processing of various types of materials. The acquired knowledge is useful for those who are also engaged in the field of quality assurance of materials.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Assessment of the knowledge taught - at the end of the semester (grade V), by solving some tests that consist of a theoretical part and problems	Written test / Oral test	80%
10.5 Seminars	Students will be evaluated	Written test / Oral test	20%

^{2.} David Brandon Wayne D. Kaplan, Microstructural Characterization of Materials, 2008, John Wiley & Sons, Ltd, ISBN:9780470027844;

/Laboratory/Project	at each laboratory session				
	taking into account the				
	degree of involvement				
	and how to process and				
	interpret the results in				
	practical activities. The				
	final grade in the				
	laboratory (L) represents				
	the arithmetic mean of				
	the grades from each				
	practical session				
10.6 Minimum standard of performance					
 Colloquium note ≥ 5 	; Laboratory grade ≥ 5, (Collo	quium grade = 0.8 V + 0.2L)			

Date of filling in:		Title Surname Name	Signature
16.05.2023	1 +	Assoc.Prof. Bogdan Viorel Neamtu	
	Lecturer	Assoc.Prof. Traian Florin Marinca	
	Teachers in	Assoc.Prof. Bogdan Viorel Neamtu	
	charge of application	Assoc.Prof. Traian Florin Marinca	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	33,00

2. Data about the subject

2.1	Subject name			Practical Activity I					
2.2	Course respor	rse responsible/lecturer			ecturer Marius Tintelecan marius.tintelecan@ipm.utcluj.ro				
2.3	Teachers in ch	achers in charge of		Loct	.ecturer Marius Tintelecan marius.tintelecan@ipm.utcluj.				
2.5	seminars		Lect						
2.4	2.4 Year of study 2 2.5 Seme			ster	2	2.6 Assessment	V		
2.7 9	2.7 Subject Formative categ				,			DS	
cate	category Optionality							DI	

3. Estimated total time

3.1 Number of hours per week	0	of which	3.2 Course	0	3.3 Seminar	0	3.3 Laboratory	0	3.3 Project	0
3.4 Total hours in the curriculum	90	of which	3.5 Course	0	3.6 Seminar	0	3.6 Laboratory	0	3.6 Project	0
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	у					1	.0
(b) Supplementary study in	(b) Supplementary study in the library, online and in the field							(C	
(c) Preparation for seminar	s/labo	oratory wo	orks, hon	newo	ork, report	s, pc	ortfolios, essa	ys	(C
(d) Tutoring									(C
(e) Exams and tests									(0
(f) Other activities									(C
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 10										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	General engineering knowledges

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications	Practice agreement with companies.

	(laboratory)	
--	--------------	--

6. Specific competences

Professional Competences	competences	- - -	Learning of a process/technological flux in production; Utilising the knowledges about the materials properties in the study of the behaviour of materials in technological flux – from the raw materials to the final products. Appreciation over the quality of the final products and materials and also of the process; Using the industrial apparatus/installations;
ss ences		-	Teamwork; Deadlines; Tasks;
Cross competences		-	Familiarisation with the product processes and socialisation in the industrial environment; Understanding the hierarchy in the enterprise/factory/company/etc

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Be familiar and understanding the technological processes, industrial production and industrial equipments
7.2	Specific objectives	Study of the material characteristics/materials quality over the technological flux; Knowing the operation mode of the apparatus/installation from a given technological flux;

8. Contents

At company/factory/enterprise choice.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills will be required for employees who will work as engineers in production and/or quality departments.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Practical activity	The students will briefly present their activity in the company with the accent on the practical parts.	Oral tests/question and answers session (O)	50%
10.5 Laboratory	The student will present a notebook where they will describe their activity in the company. Their activities	practice notebook (N)	30%

	will be presented with a timetable.	
10.6. Minimur	n standard of performance	
$P \ge 5, O \ge 5, N$	\geq 5, P (the general examination mark) = 0,5O+0,5N	

Date of filling in:		Title Surname Name	Signature
14.05.2023	Lecturer	Lecturer Marius Tintelecan	
	Teachers in charge of application	Lecturer Marius Tintelecan	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	34,10

2. Data about the subject

2.1	Subject name				Measurement techni	iques and data acquisition	
2.2 Course responsible/lecturer				Conf.dr.ing.Dan Frunza <u>Dan.Frunza@ipm.utcluj.ro</u>			
2.2					Conf. Dr. Fiz. Florin Popa – <u>florin.popa@stm.utcluj.ro</u>		
2.3	Teachers in charge of cominars		Conf.dr.ing.Dan Frunza <u>Dan.Frunza@ipm.utcluj.ro</u>				
2.5	Teachers in charge of seminars				Conf. Dr. Fiz. Florin F	Popa – <u>florin.popa@stm.utcluj.ro</u>	
2.4	ear of study	11	2.5 Semester	2	2.6 Assessment	С	
2.7 5	Subject	Form	native category			DS	
cate	gory	Opti	onality			DI	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	2	3.3 Projec	t
3.4 Total hours in the curriculum	56	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	28	3.6 Projec	t
3.7 Individual study:		•	•		•					
(a) Manual, lecture materia	l and	notes, bib	liograph	y						10
(b) Supplementary study in	the lil	brary, onli	ne and i	n the	e field					0
(c) Preparation for seminar	s/labo	ratory wo	rks, hon	newo	ork, repor	ts, pc	ortfolios, essa	ys		6
(d) Tutoring										0
(e) Exams and tests										3
(f) Other activities										0
3.8 Total hours of individual stud	y (sum	nm (3.7(a)	3.7(f)))		19					
3.9 Total hours per semester (3.4	+3.8)				75					
3.10 Number of credit points					3					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of physics, and programming.
4.2	Competence	Basic knowledge of physics, and programming.

5. Requirements (where appropriate)

5.1 For the course

5.2	For the applications	80% Teams
5.2	seminar / lab / proj.	20% onsite

6. Specific competences

Professional	competences	 To be able to measure different physical type and be able to estimate the accuracy of these measurements. To understand and know the operating principles of the most important types of measuring and control instruments. To be able to correctly determine measurement errors and be able to trace regression curves of the experimental data. To know how temperature, pressure, voltage, etc. transducers work. To understand how to convert analogue signals into digital signals; To know what the possibilities for data acquisition are; understand how to process and acquire a signal.
Cross	competences	 to acquire appropriate scientific language with specific engineering concepts to know the main devices for measuring temperature, pressure, strain in the material, etc.; to be able to understand the versatility of the different measuring devices; to be able to apply the fit analyses in any technical field.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	 understanding how transducers and sensors work, and how measured data can be acquired using computers and adequate software.
7.2	Specific objectives	 -understanding the occurrence, role and how to minimize experimental errors; - knowledge of how the various transducers work and the measurement principles; - understanding the ways of digital conversion and acquisition of scientific data.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.Basic concepts: terminology, physical types, transducers-			
definition, measuring devices.			
2. Measurement scales, criteria for the classification of	2		
measuring instruments. Accuracy and precision of		Use: multimedia	
measuring devices.		means, an interactive teaching style, student	
3. Analysis of experimental data. Measurement errors.	2	teacher partnership,	
Regression of experimental data.		encouraging the	
4. Transducers and basic measuring elements. Measuring	2	participation of students in additional	
temperature with thermocouples.		practical activities	
5. Transducers and basic measuring elements. Temperature	2		
measurement with RTD (resistance temperature			
detectors), thermistors, integrated circuits.			

6.Transducers and basic measuring elements. Pressure	
measurement.	
7.Transducers and basic measuring elements. Measuring	2
strain and stress in parts. Strain Gauges.	
8.Acquisition and processing of experimental data, Digital	2
processing of analog signals.	
9. Overview of data acquisition systems.	2
10.Data acquisition systems – specific structures.	2
11.Architectures and communication interfaces.	2
12.Programming in Labview graphic language.	2
13-14. Data types, block diagram, control structures in	4
LabView, creating programs for data acquisition and signal	
procesing.	

Bibliography

1. F. Popa, D. Frunză, Note de curs

2. F. Popa, D. Frunză - Măsurarea și achiziția de date, UTPress, Cluj-Napoca, 2014, ISBN 978-973-662-937-2

D. Placko, Fundamentals of Instrumentation and Measurement, Hermes Science Publications, 2000;
 J. R. Taylor An introduction to error analysis, 2nd edition, University science books, 1997;

5. A. S. Morris, Measurement & Instrumentation Principles, 3rd edition, Butterworth Heinemann, 2001; 6. Handbook of Modern Sensors - Physics, Designs, and Applications - 4th Ed , Edited bz J. Fraden,

Springer Science + Business Media, LLC 2010;

8.2. Seminars /Laboratory/Project	Number	Teaching methods	Notes
1 Lob proceptation NTC	of hours 2		
1. Lab presentation, N.T.S.		-	
2. Statistical analysis of repeated measurements.	2		
Eliminate aberrant errors.			
3.Construction and calibration of the thermocouples. The	2		
laws of the thermocouples.			
4. Operation of the thermopil.	2]	
5.Displacement and position Measurement.	2	Practical activities	80% on site
 6. Strain and stress measurement using strain gauges. Strain gauges types, shapes, electrical characteristics. Wheatstone bridge circuits. 	2	aim to exemplify the occurrence and	20% on line
7. Measurement of force, pressure, using strain gouges.	2	how to eliminate	
8.Vibration measurement	2	errors. Knowledge of how transducers	
9.Programming in Labview.	2	are constructed	
10 Measuring temperature and displacement using the LM35 temperature sensor, Vishay resistive position sensor, LabVIEW and NI USB6001 data acquisition system.	2	and operated.	
11-12.Measuring, compensation and recording of temperature using a thermocouple type k (Cromel-Alumel), LabVIEW and NI USB6211 data acquisition system.	4		
13-14 Force transducer calibrating, measuring and	4		
recording, using a beam with strain gauges,			

instrumentation amplifier, LabVIEW and NI USB6211 data						
acquisition system.						
Bibliography						
1. F. Popa, D. Frunză - Măsurarea și achiziția de date, UTPres	s, Cluj-Nap	oca, 2014, ISBN 978-9	73-662-			
937-2						
	3. D. Placko, Fundamentals of Instrumentation and Measurement, Hermes Science Publications, 2000;					
4. J. R. Taylor, An introduction to error analysis, 2 nd edition,						
5. A. S. Morris, Measurement & Instrumentation Principles,						
6. Handbook of Modern Sensors - Physics, Designs, and App	ications - 4	th Ed , Edited bz J. Fra	aden,			
Springer Science + Business Media, LLC 2010;						
	ications - 4	th Ed , Edited bz J. Fra	aden,			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	 understanding the concept of error the relationship between precision and accuracy the operation of different types of transducers 	Written or quiz test – duration of evaluation 1.5-2 hours	75%			
10.5 Seminars /Laboratory/Project	 evaluation of experimental errors understanding the principles and calibration of transducers. 	Continuous evaluation during semester time.	25%			
10.6 Minimum standard of performance						

Date of filling in:		Title Surname Name	Signature
12.04.2023	Lecturer	Conf.dr.ing Dan Frunza Conf. Dr. Fiz. Florin Popa	
	Teachers in charge of application	Conf.dr.ing.Dan Frunza Conf. Dr. Fiz. Florin Popa	

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
1.8	Subject code	34,20

2. Data about the subject

2.1	Subject name				Basic of experimental research			
2.2	Course responsible/lecturer				Lecturer Tintelecan Marius-marius.tintelecan@ipm.utcluj.ro			
2.3	Teachers in ch	narge	of seminars		Lecturer Tintelecan Marius-marius.tintelecan@ipm.utcluj.ro			
2.4 ^v	2.4 Year of study III 2.5 Semester 2			2	2.6 Assessment	verification		
2.7 9	2.7 Subject Formative category						DD	
category Optionality						DO		

3. Estimated total time

				-		1	
3.1 Number of hours per week	4	of which	3.2 Course		2	3.3 Laboratory	2
3.4 Total hours in the curriculum	56	of which	3.5 Course		28	3.6 Laboratory	28
3.7 Individual study:							
(a) Manual, lecture mater	ial and not	es, bibliogra	aphy				9
(b) Supplementary study in the library, online and in the field						5	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						3	
(d) Tutoring						-	
(e) Exams and tests							2
(f) Other activities						-	
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 19							
3.9 Total hours per semester (3.4+3.8) 75							
3.10 Number of credit points 3,00							

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	The presence at the laboratory will be compulsory

6. Specific competences

Professional	competences	 Expression through written and oral communication in technical language of the theoretical foundations in the field of experimental research; Acquiring knowledge on the use of equipment for measuring physical quantities, processing and interpreting the results of experimental research; Formulation and application of methods and techniques / principles specific to automotive and transport engineering, used in experimental research;
Cross	competences	 Applying the techniques of relationship and efficient work in a multidisciplinary team, on various hierarchical levels, within the work teams - specific project management; Adequate use of effective learning methods and techniques; appropriate use of information and oral and written communication.

7. Discipline objectives (as results from the key competences gained)

		- Acquiring knowledge on the use of physical quantity measuring
7.1	General objective	equipment, processing and interpreting the results of
		experimental research.
		- Development of advanced applied research skills;
		- Operation and instrumentation with modern research and
7.2	Specific objectives	testing equipment;
		- Learning the methods of processing the results of experimental
		research.

8. Contents

8.1. Le	cture (syllabus)	Number of hours	Teaching methods	Notes
1.	1. General considerations.Theoretical research and applied research.Experimental research. Research methods. Stagesof the research process. Profile of the scientificresearcher: types of researchers,research motivation, research education.	2	PowerPoint presentation Interactive	
2.	Scientific research methods. Laboratory tests, model tests, real - world operation tests, compliance, expertise and tests of expertise.	2	teaching mode Dialogue - conversation	Multimedia Blackboard
3.	Planning and scheduling experimental research.	2	professor -	
4.	<u>General principles of measurement</u> . Measurement operation and the sizes being measured. Measurement methods. General functional diagram of measuring devices and	2	student	

	weeks and The selections are a series of the black and		
	systems. Translators, measured variables and		
	associated variables. Disturbing signals of		
_	entrance.		
5.	Overall performance of measuring systems.		
	Static performance. Defining static performance		
	and static calibration. Measuring range. Sensitivity.	2	
	Linearity. Mobility threshold and resolution.	_	
	Hysteresis error. Accuracy. Performances dynamic.		
	General dynamic model of measurement systems.		
6.	Measurement methods.		
	Measurement of displacements and speeds.		
	Measurement of displacements with	2	
	potentiometric, inductive, capacitive transducers.	2	
	Speed measurement in translational motion.		
	Measurement of rotational speeds.		
7.	Measurement of unit stresses and deformations.		
	Resistive electrical tensometry method. Resistive		
	tensometric transducer. Measurement principle,	2	
	transducer construction, limits of request.		
	Electrical measuring installation.		
8.	Pressure and flow measurement.	2	
	Measurement methods. Manometers with liquid		PowerPoint
	manometers, with elastic elements. transducers		presentation
	piezoelectric. Pressure measurement with resistive		Interactive
	tensometric transducer.		teaching
9.	Measurement of forces.		mode
	Direct / indirect measurement. Capture	2	
	dynamometric. Force measurement using force	2	Dialogue -
	cells.		conversation
10.	Measurement of rotational moments.		professor -
	Measurement systems by elastic suspension.	2	student
	Measuring systems with torque transducers.		
11.	Temperature measurement.		
	Liquid thermometers, bimetal, manometric. Heat		
	resistant measuring devices. Detectors	2	
	temperature resistive. Thermistors. Radiant		
	temperature measuring devices. Pyrometer.		
12.	Techniques for measuring and evaluating pollutant	2	
	emissions.	2	
13.	Measurement errors.		
	The distribution of random errors. Probabilistic		
	model. Normal distribution. Measurement	2	
	accuracy indicators. Methods of eliminating gross		
	errors for σ known / unknown. Estimates of the		
	enois for O knowny unknown, Estimates of the		

	true values of a measured quantity. Minimum		
	number of measurements required.		
	Average values and their estimates. Hypothesis		
	testing.		
	Calculation of the averages of the experimental		
	data series and of the data series grouped by		
	intervals. Comparison of average values. Estimate		
	accuracy of measurements. Moments of		
	distribution. Comparison of dispersions.		
	Concordance criterion. Lognormal distribution.		
14.	Determining the parameters of empirical formulas		
	by the least squares method. The principle of the		
	method, the mathematical formulation of the least		
	squares method. Determining the parameters of		
	approximation polynomials. (Determining the		
	parameters of a polynomial of degree I, II, n and of	•	
	Chebyshev polynomials).	2	
	Interpolation of a series of experimental data.		
	Linear interpolation.		
	Polynomial interpolation. Spline interpolation.		
	Other forms of interpolation. The Runge		
	phenomenon and its avoidance.		
Bibliog	•		I

Bibliography

1. David L, I. Păunescu, Bazele cercetarii experimentale a sistemelor biotehnice, București, 1999.

2. Dușe D. M., N. F. Cofaru, Bazele cercetării experimentale, Sibiu, 2001.

3. Filip N., Zgomotul la autovehicule : măsurarea și reducerea zgomotului la evacuarea gazelor pentru motoarele cu ardere internă: fiabilitatea functională, Cluj Napoca, 2000.

4. Gheres M. I., Bazele cercetării experimentale. Suport de curs – format electronic. UTCN, 2018.

5. Ionescu C., M. Manoliu, Dezvoltarea durabila si protejarea mediului, București, 1998.

6. Oprişan G., G. I. Sebe, Compendiu de teoria probabilitatilor si statistica matematica, Bucureşti, 1999.

8.2. Laboratory		Teaching	Notes
	of hours	methods	
Neasurement of displacements, speeds and	4		
ccelerations			
Aeasurement of forces and moments	4		
3. Pressure and flow measurement		Explication,	Blackboard, computer,
Measurement of pollutant emissions			
hecking the normal distribution of random errors	1	conversation, Case Study.	specialized software
vith the criterion of concordance.	4		
Development of a data acquisition system for	1		soltware
neasurement temperatures.	4		
evelop a program using LabView software for	4		
ata acquisition.	+		
	leasurement of displacements, speeds and ccelerations leasurement of forces and moments ressure and flow measurement leasurement of pollutant emissions necking the normal distribution of random errors ith the criterion of concordance. evelopment of a data acquisition system for leasurement temperatures. evelop a program using LabView software for	of hoursleasurement of displacements, speeds and ccelerations4leasurement of forces and moments4ressure and flow measurement4leasurement of pollutant emissions4necking the normal distribution of random errors ith the criterion of concordance.4evelopment of a data acquisition system for neasurement temperatures.4evelop a program using LabView software for 44	ratoryof hoursmethodsleasurement of displacements, speeds and ccelerations44leasurement of forces and moments44ressure and flow measurement44leasurement of pollutant emissions44leasurement of pollutant emissions44leasurement of a data acquisition system for easurement temperatures.4evelop a program using LabView software for4

Bibliography

1. Crețu G., Bazele cercetarii experimentale : indrumar de laborator, Iași, 1992.

2. Lupea I., Măsurători de vibrații și zgomote prin programare cu LabView, Cluj Napoca, 2005.

15. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the technological engineers who carry out their activity either in the design workshops / research laboratories or in the productive sections.

16. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the			
Activity type		10.2 Assessment methods	final grade			
	On-going evaluation					
10.4 Course	based on 2 tests and final	Final written evaluation -	75%			
10.4 Course	evaluation (problems and	evaluation (problems and duration of evaluation 2 hours				
	questions from theory)					
	On-going evaluation					
10 E Laboratory	based on discussions and	Discussions, tests - duration of	25%			
10.5 Laboratory	self-evaluations and final	evaluation 1 hour	23%			
	evaluation by test.					
10.6 Minimum standard of performance: Minimum 50% of total activities.						

Date of filling in:		Title Surname Name	Signature
16.04.2023	Lecturer	Lecturer Tintelecan Marius	
	Teachers in	Lecturer Tintelecan Marius	
	charge of application		

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Materials and Environmental Engineering
1.3	Department	Materials Science and Engineering
1.4	Field of study	Materials Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Materials Science
1.7	Form of education	Full time
		35.10 Modern language IV English
1.8	Subject code	35.20 Modern language IV French
		35.30 Modern language IV German

2. Data about the subject

2.1	Subject name				English French German IV				
2.2	Course responsible/lecturer				-				
2.3	Teachers in charge of seminars				Conf. dr. Sanda Pădurețu – Lb. engleză Sanda.Paduretu@lang.utcluj.ro				
2.4	2.4 Year of study II 2.5 Semester II			II	2.6 Assessment	С	DC/DO		
2.7 \$	2.7 Subject Formative category Englis			sh, French, German la	inguage				
cate	category Optionality DC/DO								

3. Estimated total time

Year	Name of the discipline	Nr.	Cours	Ар	olic	ati	Cours	Ар	plica	tio	Individ		
/		wee	е	(ons		е		ns		ual	Ļ	t
Sem		ks									study	ΤA	Credit
			[ore	/săp	ot.]			[or	e/se	m.]		TC	C
				S	L	Ρ		S	L	Ρ			
Ι	Modern language	14	-	2	-	-	-	28	-	-	22	50	2

3.1	Number of hours per week	2	3.2	of which,	-	3.3	applicatio	2
				course:			ns:	
3.4	Total hours in the	50	3.5	of which,	-	3.6	applicatio	28
	curriculum			course:			ns:	
Indiv	/idual study							Ore
Man	ual, lecture material and note	es, bib	liograp	hy				7
Supp	plementary study in the librar	y, onli	ine and	in the field				2
Prep	paration for seminars/laborate	ory wo	orks, ho	mework, report	s, po	rtfolios,	essays	8
Tuto	oring							2
Exar	ns and tests							3
Other activities						-		
3.7	Total hours of individual stu	dy	22					
3.8	Total hours per semester		28					
3.9	Number of credit points		2					

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Minimum level of knowledge of the modern language B1 / B2
		(English) and A1 / A2 (French) (cf. CEFR - Common European
		Framework of Reference for Languages)

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Class attendance, individual study
		Rooms B 102, B 103 / M102, M 104 - onsite
		MS Teams Platform – online

6. Specific competences

	Application of grammar, format rules and conventions regarding the writing of technical documents in the foreign language
Professional competences	Elaboration, reformulation, summary and synthesis of texts in formal technical style
Cross competences	Ability for foreign language documentation, useful for academic and / or professional careers Oral and written communication skills in multicultural professional teams.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of linguistic and communicative skills in a
		foreign language in professional situations.
7.2	General objectives	Assimilation of the basic lexicon in the fields of interest and related of materials science and engineering. Effective use of language and communication skills in the foreign language.

3. Contents

8.2. Seminars /Laboratory/Project	Number	Teaching	Notes	
	of hours	methods	NOLES	
1. Technology and globalization	2	Communicative	Online	
2. Industrial pollution and environmental protection	2	and interactive	platform,	
3. Nanotechnologies	2	strategies.	Interactive	
4. Raw materials. Materials processing	2	Integrated	board, CD	

5. Casting, sintering, metal extrusion	2	skills, flipped	Player,			
	2	learning,	video			
6. The furnace. Types of furnaces		blended	projector			
		learning				
7. Professional oral presentation. Stages of oral	2					
presentation						
8. Aspects related to ensuring the success of the oral	2					
presentation						
9. Using visual support	2					
10. Discursive elements to facilitate message decoding	2					
11. The interactional aspect of the presentation	2					
12. Individual oral presentations on topics of professional	2					
interest						
13. Individual oral presentations with their evaluation in	2					
the group of students based on the grid of performance						
criteria established jointly with the students						
14. Written assessment	2					
Bibliography						
Glendinning, E. and Alison Pohl, Technology 1, OUP, 2008						
Aspects of English Grammar in Technical Contexts, U.T. Pres	s, Cluj-Napoc	a, 2015				
Ibbotson, M., Cambridge English for Engineering, CUP, 2009.						
Ioani, M., Le français de la communication scientifique et teo	chnique, Ed.	Napoca Star, Cluj-	Napoca,			
2002.						
Tescula, C., Le francais de la technique, UT.Press, Cluj-Napoca,2005.						
File "Présenter en français" (disponibil la biblioteca facultății).						
Paris, D.; Foltete Paris, B., Environnement.com, CLE International, Paris, 2009.						
E. Cloose, Le français du monde du travail, Grenoble, PUG, 2009.						
J. L. Penfornis Français.com, nouvelle édition, Paris, CLE International, 2012.						

4. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Optimizing communication with the interlocutor / partner on the labor market

10. Evaluation

Activity type	10	Assessment criteria	10.2	Assessment	10.3	Weight in the
	.1			methods		final grade
Seminar Applications		Fulfilling work tasks at the written test, taking part in a		Written exam		30%
		conversations or a monologue,		Oral exam		40%
		seminar activity, homework		Practical		30%
				assessment		
				(seminar activity,		

		homework)				
10.4 Minimum standa	rd of performance:					
The student is accepte	ed at the final evaluation, if his/her o	contribution to the sem	inar topics is 80%.			
The grade is calculated if each component is correctly done at least 60%.						
Final grade: 0,3 Ts + 0,	4 Po + 0,3 P					
Data of filling in	Drofossor in charge with	T	barge of the comin			

Date of filling in

20.03.2023

Professor in charge with the discipline Conf. dr. Sanda Pădureţu Teachers in charge of the seminar

Conf. dr. Sanda Pădurețu

Date of approval in the department 26.06.2023

Head of department Ass.prof.dr.eng. Mariana Pop

Date of approval in the faculty 10.07.2023